Skip to main content
Log in

Cloning, expression, and characterization of phyA gene from Ipomoea batatas

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Phytochrome A (phyA), as a photoreceptor, has a profound influence on plant growth and development and participates in many important physiological processes, such as seed germination, seeding deetiolation, and flowering. On the basis of transcriptome database of sweet potato (Ipomoea batatas (L.) Lam.), phyA gene was cloned and sequenced. The gene has an open reading frame (ORF) of 3384 bp, encodes a protein with 1127 amino acid residues and a mol wt of 125.03 kD. More interestingly, it was found that there were three highly homologous phyA cDNA isoforms in sweet potato. In addition, when the genomic sequence of phyA gene was obtained by PCR using sweet potato genomic DNA as a template, it contained 4 exons and 3 introns with a total size of 4957 bp. The cDNA of phyA gene was inserted into the vector pET-32a(+) and successfully expressed in Escherichia coli BL21(DE3). The results of quantitative real-time PCR indicated that the expression level of phyA gene was higher in stem, followed by leaf, and the lowest in tuberous root. Besides, the expression of phyA mRNA in the mature leaf showed an obvious circadian rhythm in a day: mRNA accumulation gradually increased in darkness and decreased in the daylight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FRL:

far-red light

HIR:

high irradiance response

phyA:

phytochrome A

RL:

red light

VLFR:

very low fluence response

References

  1. Li, S.Z. and Chan-Halbrendt, C., Ethanol production in (the) People’s Republic of China: Potential and technologies, Appl. Energy, 2009, vol. 86, pp. S162–S169.

    Article  CAS  Google Scholar 

  2. Deng, X.W. and Quail, P.H., Signalling in light-controlled development, Semin. Cell Dev. Biol., 1999, vol. 10, pp. 121–129.

    Article  CAS  PubMed  Google Scholar 

  3. Franklin, K.A. and Quail, P.H., Phytochrome functions in Arabidopsis development, J. Exp. Bot., 2010, vol. 61, pp. 11–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sharrock, R.A. and Quail, P.H., Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family, Genes Dev., 1989, vol. 3, pp. 1745–1757.

    Article  CAS  PubMed  Google Scholar 

  5. Dehesh, K., Tepperman, J., Christensen, A.H., and Qual, P.H., phyb is evolutionarily conserved and constitutively expressed in rice seedling shoots, Mol. Gen. Genet., 1991, vol. 225, pp. 305–313.

    Article  CAS  PubMed  Google Scholar 

  6. Tahir, M., Kanegae, H., and Takano, M., Phytochrome C (PHYC) gene in rice: isolation and characterization of a complete coding sequence, Plant Physiol., 1998, vol. 118, p. 1535.

    Google Scholar 

  7. Montgomery, B.L. and Lagarias, J.C., Phytochrome ancestry: sensors of bilins and light, Trends Plant Sci., 2002, vol. 7, pp. 357–366.

    Article  CAS  PubMed  Google Scholar 

  8. Pratt, L.H., Cordonnier-Pratt, M.M., Hauser, B., and Caboche, M., Tomato contains two differentially expressed genes encoding B-type phytochromes, neither of which can be considered an ortholog of Arabidopsis phytochrome B, Planta, 1995, vol. 197, pp. 203–206.

    Article  CAS  PubMed  Google Scholar 

  9. Rockwell, N.C. and Lagarias, J.C., The structure of phytochrome: a picture is worth a thousand spectra, Plant Cell Online, 2006, vol. 18, pp. 4–14.

    Article  CAS  Google Scholar 

  10. Nagatani, A., Phytochrome: structural basis for its functions, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 565–570.

    Article  CAS  PubMed  Google Scholar 

  11. Rockwell, N.C., Su, Y.S., and Lagarias, J.C., Phytochome structure and signaling mechanisms, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 837–858.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen, M., Chory, J., and Fankhauser, C., Light signal transduction in higher plants, Ann. Rev. Genet., 2004, vol. 38, pp. 87–117.

    Article  CAS  PubMed  Google Scholar 

  13. Quail, P.H., Phytochrome photosensory signalling networks, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 85–93.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, L., Kircher, S., Tóth, R., Adam, E., Schäfer, E., and Nagy, F., Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis, Plant J., 2001, vol. 22, pp. 125–133.

    Article  Google Scholar 

  15. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schwede, T., Kopp, J., Guex, N., and Peitsh, M.C., SWISS-MODEL: an automated protein homologymodeling server, Nucleic Acids Res., 2003, vol. 31, pp. 3381–3385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Borthwick, H.A., Hendricks, S.B., Parker, M.W., Toole, E.H., and Toole, V.K., A reversible photoreaction controlling seed germination, Proc. Natl. Acad. Sci. USA, 1952, vol. 38, pp. 662–666.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Casal, J.J. and Sánchez, R.A., Phytochromes and seed germination, Seed Sci. Res., 1998, vol. 8, pp. 317–330.

    Article  CAS  Google Scholar 

  19. Sharma, R., Phytochrome: A serine kinase illuminates the nucleus! Curr. Sci. (Bangalore), 2001, vol. 80, pp. 178–188.

    CAS  Google Scholar 

  20. Christie, J.M. and Jenkins, G.I., Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells, Plant Cell Online, 1996, vol. 8, pp. 1555–1567.

    Article  CAS  Google Scholar 

  21. Shinomura, T., Nagatani, A., Chory, J., and Furuya, M., The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A, Plant Physiol., 1994, vol. 104, pp. 363–371.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., and Harberd, N.P., Phytochrome A null mutants of Arabidopsis display a wildtype phenotype in white light, Plant Cell Online, 1993, vol. 5, pp. 757–768.

    Article  CAS  Google Scholar 

  23. Somers, D.E., Devlin, P.F., and Kay, S.A., Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock, Science, 1998, vol. 282, pp. 1488–1490.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, E., Bradley, M., Harberd, N.P., and Whitelam, G.C., Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of daylength extensions), Plant Physiol., 1994, vol. 105, pp. 141–149.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M., and Chory, J., Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development, Plant Physiol., 1994, vol. 104, pp. 1139–1149.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Gao, M., Ashu, G.M., Stewart, L., Akwe, W.A., Njiti, V., and Barnes, S., Wx intron variations support an allohexaploid origin of the sweetpotato [Ipomoea batatas (L.) Lam.], Euphytica, 2011, vol. 177, pp. 111–133.

    Article  CAS  Google Scholar 

  27. Tao, X., Gu, Y.H., Wang, H.Y., Zheng, W., Li, X., Zhao, C.W., and Zhang, Y.Z., Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.], Plos One, 2012, vol. 7: e6234.

  28. Hall, A., Kozma-Bognár, L., and Tóth, R., Conditional circadian regulation of PHYTOCHROME A gene expression, Plant Physiol., 2001, vol. 127, pp. 1808–1818.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lakin-Thomas, P.L., Circadian rhythms: new functions for old clock genes, Trends Genet., 2000, vol. 16, pp. 135–142.

    Article  CAS  PubMed  Google Scholar 

  30. McWatters, H.G., Bastow, R.M., Hall, A., and Millar, A.J., The ELF3 zeitnehmer regulates light signalling to the circadian clock, Nature, 2000, vol. 408, pp. 716–720.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Z. Zhang.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.X., Jiang, Y.S., Yan, Y. et al. Cloning, expression, and characterization of phyA gene from Ipomoea batatas . Russ J Plant Physiol 62, 109–115 (2015). https://doi.org/10.1134/S102144371406020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371406020X

Keywords

Navigation