Russian Journal of Plant Physiology

, Volume 61, Issue 6, pp 899–909 | Cite as

Extra perspectives of 5-ethynyl-2′-deoxyuridine click reaction with fluorochrome azides to study cell cycle and deoxyribonucleoside metabolism

  • A. V. NosovEmail author
  • A. A. Fomenkov
  • A. S. Mamaeva
  • A. E. Solovchenko
  • G. V. Novikova


Beginning with the pioneering work of Salic and Mitchison (2008), the application of thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) for the detection of cells replicating DNA is actively expanding. Being incorporated into DNA, this nucleoside after click reaction of azide-alkyne cycloaddition with azides of fluorochromes can be easily detected by fluorescence. Recently, protocols of EdU application in combination with click reaction adapted for plant cells appeared, and they are help for a monitoring S-period of the cell cycle in the root meristems and in vitro cultured cells with the help of a microscope and flow cytometer. In this work, we focused some details of developed methods and their modifications and also recommended new protocols. In particular, we suggested combining EdU incorporation into the cells replicating DNA with subsequent isolation of protoplasts from them and their preparation for the microscopic analysis and flow cytometry. In addition, the method of determination of EdU phosphorylation dynamics in the cells in vivo is suggested.


Arabidopsis thaliana Chlamydomonas reinhardtii Synechocystis Vigna radiata cell cycle cell culture nucleotides S-period protoplasts flow cytometry thymidine kinase fluorescence microscopy 



7-aminoactinomycin D




cell cycle










mithramycin A


phosphate-buffered saline


propidium iodide


thymidine kinase


two-parameter flow cytometry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reichard, P., Interactions between deoxyribonucleotide and DNA synthesis, Annu. Rev. Biochem., 1988, vol. 57, pp. 349–374.PubMedCrossRefGoogle Scholar
  2. 2.
    Möhlmann, T., Bernard, C., Hach, S., and Neuhaus, H.E., Nucleoside transport and associated metabolism, Plant Biol., 2010, vol. 12, suppl. 1, pp. 26–34.CrossRefGoogle Scholar
  3. 3.
    Taylor, J.H., Woods, P.S., and Hughes, W.L., The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine, Proc. Natl. Acad. Sci. USA, 1957, vol. 43, pp. 122–128.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Salic, A. and Mitchison, T.J., A chemical method for fast and sensitive detection of DNA synthesis in vivo, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 2415–2420.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kotogány, E., Dudits, D., Horváth, G.V., and Ayaydin, F., A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine, Plant Methods, 2010, vol. 6, no. 6 (5), doi 10.1186/1746-4811-6-5Google Scholar
  6. 6.
    Cavanagh, B.L., Walker, T., Norazit, A., and Meedeniya, A.C.B., Thymidine analogues for tracking DNA synthesis, Molecules, 2011, vol. 16, pp. 7980–7993.PubMedCrossRefGoogle Scholar
  7. 7.
    Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B., A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes, Angew. Chem., 2002, vol. 114, pp. 2708–2711.CrossRefGoogle Scholar
  8. 8.
    Tornøe, C.W., Christensen, C., and Meldal, M., Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, Org. Chem., 2002, vol. 67, pp. 3057–3064.CrossRefGoogle Scholar
  9. 9.
    Vanstraelen, M., Baloban, M., da Ines, O., Cultrone, A., Lammens, T., Boudolf, V., Brown, S.C., de Veylder, L., Mergaert, P., and Kondorosi, E., APC/CCCS52A complexes control meristem maintenance in the Arabidopsis root, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 11 806–11 811.CrossRefGoogle Scholar
  10. 10.
    Bass, H.W., Wear, E.E., Lee, T. J., Hoffman, G.G., Gumber, H.K., Allen, G.C., Thompson, W.F., and Hanley-Bowdoin, L., A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development, J. Exp. Bot., 2014, doi 10.1093/jxb/ert470Google Scholar
  11. 11.
    Schenk, R.U. and Hildebrandt, A.C., Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures, Can. J. Bot., 1972, vol. 50, pp. 199–204.CrossRefGoogle Scholar
  12. 12.
    Rippka, R., Isolation and purification of cyanobacteria, Methods Enzymol., 1988, vol. 167, pp. 3–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Gorman, D.S. and Levine, R.P., Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 1965, vol. 54, pp. 1665–1669.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wolcott, R.M. and Colacino, J.M., Detection of thymidine kinase activity using an assay based on the precipitation of nucleoside monophosphates with lanthanum chloride, Anal. Biochem., 1989, vol. 178, pp. 38–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Pollard, P.C. and Moriarty, D.J., Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis, Appl. Environ. Microbiol., 1984, vol. 48, pp. 1076–1083.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Watanabe, S., Ohbayashi, R., Shiwa, Y., Noda, A., Kanesaki, Y., Chibazakura, T., and Yoshikawa, H., Light-dependent and asynchronous replication of cyanobacterial multi-copy chromosomes, Mol. Microbiol., 2012, vol. 83, pp. 856–865.PubMedCrossRefGoogle Scholar
  17. 17.
    Hua, H. and Kearsey, S.E., Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2′-deoxyuridine, Nucleic Acids Res., 2011, vol. 39: e60, doi 10.1093/nar/gkr063PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gristwood, T., Duggin, I.G., Wagner, M., Albers, S.V., and Bell, S.D., The sub-cellular localization of Sulfolobus DNA replication, Nucleic Acids Res., 2012, vol. 40, pp. 5487–5496.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Swinton, D.C. and Chiang, K.S., Characterization of thymidine kinase and phosphorylation of deoxyribonucleosides in Chlamydomonas reinhardtii, Mol. Gen. Genet., 1979, vol. 176, pp. 399–409.PubMedCrossRefGoogle Scholar
  20. 20.
    Hotta, Y. and Stern, H., Inducibility of thymidine kinase by thymidine as a function of interphase stage, J. Cell Biol., 1965, vol. 25, pp. 99–108.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hofman, J. and Schwarz, O.J., Thymidine phosphorylation in wheat. Analysis of phosphate transfer from ATP to thymidine, Plant Physiol., 1978, vol. 62, pp. 930–932.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nosov, A.V., Thymidine kinase in higher plant cell: 3. Properties of the enzyme from broad bean seedlings, Russ. J. Plant Physiol., 1995, vol. 42, pp. 663–670.Google Scholar
  23. 23.
    Clausen, A.R., Girandon, L., Ali, A., Knecht, W., Rozpedowska, E., Sandrini, M.P.B., Andreasson, E., Munch-Petersen, B., and Piškur, J., Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana, FEBS J., 2012, vol. 279, pp. 3889–3897.PubMedCrossRefGoogle Scholar
  24. 24.
    Diermeier-Daucher, S., Clarke, S.T., Hill, D., Vollmann-Zwerenz, A., Bradford, J.A., and Brockhoff, G., Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry, Cytometry, part A, 2009, vol. 75A, pp. 535–546.CrossRefGoogle Scholar
  25. 25.
    Qu, D., Wang, G., Wang, Z., Zhou, L., Chi, W., Cong, S., Ren, X., Liang, P., and Zhang, B., 5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells, Anal. Biochem., 2011, vol. 417, pp. 112–121.PubMedCrossRefGoogle Scholar
  26. 26.
    Cieślar-Pobuda, A. and Łos, M.J., Prospects and limitations of “click-chemistry”-based DNA labeling technique employing 5-ethynyl-2′-deoxyuridine (EdU), Cytometry, part A, 2013, vol. 83A, pp. 977–978.CrossRefGoogle Scholar
  27. 27.
    Schubert, I., Schubert, V., and Fuchs, J., No evidence for “break-induced replication” in a higher plant — but break-induced conversion may occur, Front. Plant Sci., 2011, vol. 2, doi 10.3389/fpls.2011.00008Google Scholar
  28. 28.
    Lucretti, S., Nardi, L., Nisini, P.T., Moretti, F., Gualberti, G., and Doležel, J., Bivariate flow cytometry DNA/BrdUrd analysis of plant cell cycle, Methods Cell Sci., 1999, vol. 21, pp. 155–166.PubMedCrossRefGoogle Scholar
  29. 29.
    Galbraith, D.W., Protoplast analysis using flow cytometry and sorting, Flow Cytometry with Plant Cells, Doležel, J., Greilhuber, J., and Suda, J., Eds., Weinheim: Wiley-VCH Verlag, 2007, pp. 231–250.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Nosov
    • 1
    Email author
  • A. A. Fomenkov
    • 1
  • A. S. Mamaeva
    • 1
  • A. E. Solovchenko
    • 1
    • 2
  • G. V. Novikova
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations