Skip to main content

Apyrase, streptavidin-binding proteins, and antimicrobial activity in Pisum sativum


The 49 kD apyrase (EC, streptavidin-binding proteins, and antimicrobial activity in the subcellular fractions from different seed parts of Pisum sativum L. var. Alaska were examined. Except cotyledons, all subcellular fractions contained 49 kD apyrase, and a considerable relationship was found between 49 kD apyrase and NTPase activities that increased with increasing time of germination. The bulk of 49 kD apyrase and NTPase activities was found in the nucleus pellets and cytoskeleton-enriched fraction, indicating their physiological importance. At 72 h of germination, all subcellular fractions of primary stems have a greater amount of 49 kD apyrase and NTPase than primary leaves and much more than primary roots and cotyledonary stalks. All seed parts showed antimicrobial activities, and the bulk of inhibition activities was found in the cytoskeleton-enriched and nucleus pellets, which was greater in the primary stems and leaves than in other parts. Current findings reveal that apyrases have important roles in metabolic activities in all parts of the pea plants except cotyledons. Cotyledons contained much streptavidin-binding proteins, which might have different physiological roles than apyrases.

This is a preview of subscription content, access via your institution.



5-bromo-4-chloro-3-indolyl phosphate


bromophenol blue


cytoskeleton-stabilizing buffer


dimethyl sulfoxide


nitro blue tetrazolium


phenylmethylsulfonyl fluoride


polyoxyethylene-10-tridecyl ether


streptavidin-binding protein


  1. Plesner, L., Ecto-ATPases: identities and functions, Int. Rev. Cytol., 1995, vol. 158, pp. 141–214.

    Article  CAS  PubMed  Google Scholar 

  2. Che, M., Nishida, T., Gatmaitan, Z., and Aris, I.M., A nucleotidase transporter is functionally linked to ectonucleotidase in rat liver canalicular membrane, J. Biol. Chem., 1992, vol. 267, pp. 9684–9688.

    CAS  PubMed  Google Scholar 

  3. Di Virgilio, F., ATP as a death factor, Biofactors, 1998, vol. 8, pp. 301–303.

    Article  PubMed  Google Scholar 

  4. Marcus, A.J. and Safier, L.B., Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis, FASEB J., 1993, vol. 7, pp. 516–522.

    CAS  PubMed  Google Scholar 

  5. Abeijon, D., Yanagisawa, K., Mandon, E.C., Hausler, A., Moreman, K., Hirshchberg, D.B., and Robbins, P.W., Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae, J. Biol. Chem., 1993, vol. 122, pp. 307–323.

    CAS  Google Scholar 

  6. Todorov, L., Mihaylova-Todorova, S., Westfall, T., Sneddon, P., Kennedy, C., Bjur, R., and Westfall, D., Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation, Nature, 1997, vol. 387, pp. 76–79.

    Article  CAS  PubMed  Google Scholar 

  7. Govindarajulu, M., Kim, S.Y., Libault, M., Berg, R.H., Tanaka, K., Stacey, G., and Taylor, C.G., GS52 ectoapyrase plays a critical role during soybean nodulation, Plant Physiol., 2009, vol. 149, pp. 994–1004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Shibata, K., Morita, Y., Abe, S., Stanković, B., and Davies, E., Apyrase from pea stems: isolation, purification, characterization and identification of a NTPase from the cytoskeleton fraction of pea stem tissue, Plant Physiol. Biochem., 1999, vol. 37, pp. 881–888.

    Article  CAS  Google Scholar 

  9. Shibata, K., Abe, S., and Davies, E., Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum), Acta Physiol. Plant., 2001, vol. 23, pp. 3–13.

    Article  CAS  PubMed  Google Scholar 

  10. Roberts, N.J., Brigham, J., Wu, B., Murphy, J.B., Volpin, H., Phillips, D.A., and Etzler, M.E., A Nod factor-binding lectin is a member of a distinct class of apyrases that may be unique to the legumes, Mol. Gen. Genet., 1999, vol. 262, pp. 261–267.

    Article  CAS  PubMed  Google Scholar 

  11. Moustafa, M.F.M., Yoneda, M., Abe, S., and Davies, E., Changes in isotypes and enzyme activity of apyrase during germination of dark-grown pea (Pisum sativum) seedlings, Physiol. Plant., 2003, vol. 119, pp. 146–154.

    Article  CAS  Google Scholar 

  12. Shibata, K., Abe, S., Yoneda, M., and Davies, E., The sub-cellular distribution and isotypes of a 49-kDa apyrase from pea (Pisum sativum L. var. Alaska), Plant Physiol. Biochem., 2002, vol. 40, pp. 407–415.

    Article  CAS  Google Scholar 

  13. Abe, S. and Davies, E., Methods for isolation and analysis of the cytoskeleton, Methods in Plant Cell Biology. Part B, Galbraith, D.W., Bourque, D.P., and Bohnert, H.J, Eds., San Diego (CA): Academic, 1995, pp. 223–236.

    Chapter  Google Scholar 

  14. Okeke, M.I., Iroegbu, C.U., Eze, E.N., Okoli, A.S., and Esimone, C.O., Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity, J. Ethnopharmacol., 2001, vol. 78, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  15. Julano, B.O. and Varner, J.E., Enzymic degradation of starch granules in the cotyledons of germinating peas, Plant Physiol., 1969, vol. 44, pp. 886–892.

    Article  Google Scholar 

  16. Thomas, C., Sun, Y., Naus, K., Lloyd, A., and Roux, S.J., Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP, Plant Physiol., 1999, vol. 119, pp. 543–551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tognoli, L. and Marre, E., Purification and characterization of a divalent cation-activated ATP-ADPase from pea stem microsomes, Biochim. Biophys. Acta, 1981, vol. 642, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

  18. Abe, S., Ito, Y., and Davies, E., Co-sedimentation of actin, tubulin and membranes in the cytoskeleton fractions from peas and mouse 3T3 cells, J. Exp. Bot., 1992, vol. 43, pp. 941–949.

    Article  CAS  Google Scholar 

  19. Abe, S., Sakai, M., Yagi, K., Hagino, T., Ochi, K., Shibata, K., and Davies, E., A tudor protein with multiple SNc domains from pea seedlings: cellular localization, partial characterization, sequence analysis, and phylogenetic relationships, J. Exp. Bot., 2003, vol. 54, pp. 971–983.

    Article  CAS  PubMed  Google Scholar 

  20. Grubmeyer, C. and Spencer, M., ATPase activity of pea cotyledon submitochondrial particles: activation, substrate specificity, and anion effects, Plant Physiol., 1980, vol. 65, pp. 281–285.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Davies, E., Stanković, B., Azama, K., Shibata, K., and Abe, S., Novel components of the plant cytoskeleton: a beginning to plant “cytomics”, Plant Sci., 2001, vol. 160, pp. 185–196.

    Article  CAS  PubMed  Google Scholar 

  22. Yoneda, M., Davies, E., Morita, E.H., and Abe, S., Immunohistochemical localization of apyrase during initial differentiation and germination of pea seeds, Planta, 2009, vol. 231, pp. 47–56.

    Article  CAS  PubMed  Google Scholar 

  23. Roux, S.J. and Steinebrunner, I., Extracellular ATP: an unexpected role as a signaler in plants, Trends Plant Sci., 2007, vol. 12, pp. 522–527.

    Article  CAS  PubMed  Google Scholar 

  24. Wu, J., Steinebrunner, I., Sun, Y., Butterfield, T., Torres, J., Arnold, D., Gonzalez, A., Jacob, F., Reichler, S., and Roux, S.J., Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis, Plant Physiol., 2007, vol. 144, pp. 961–975.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Saeed, S. and Tariq, P., Effects of some seasonal vegetables and fruits on the growth of bacteria, Pak. J. Biol. Sci., 2006, vol. 9, pp. 1547–1551.

    Article  Google Scholar 

  26. Rehman, S. and Khanum, A., Isolation and characterization of peptide(s) from Pisum sativum having antimicrobial activity against various bacteria, Pak. J. Bot., 2011, vol. 43, pp. 2971–2978.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. F. M. Moustafa.

Additional information

This text was submitted by the author in English

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moustafa, M.F.M. Apyrase, streptavidin-binding proteins, and antimicrobial activity in Pisum sativum . Russ J Plant Physiol 61, 496–502 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Pisum sativum
  • 49 kD apyrase
  • streptavidin-binding proteins
  • antimicrobial activity