Advertisement

Russian Journal of Plant Physiology

, Volume 61, Issue 3, pp 309–317 | Cite as

The vernalization gene FRIGIDA in cultivated Brassica species

  • O. A. FadinaEmail author
  • E. E. Khavkin
Research Papers

Abstract

The repressor FLOWERING LOCUS C (FLC) holds a key position among the genes, which drive Arabidopsis floral transition along the vernalization pathway. The FRIGIDA (FRI) gene activates FLC expression, and the interplay of strong and weak alleles of FLC and FRI in many cases explains the variations in Arabidopsis requirement for cold induction. In annual and biennial life forms of Brassica, the variations in time to flower have been also related to FLC; whereas the place of FRI in the vernalization process has not been sufficiently elucidated. In contrast to Arabidopsis, FRI in Brassica genomes A and C and presumably B is represented by two expressible loci, FRI.a and FRI.b, each of them manifesting genome-specific polymorphisms. FRI.a and FRI.b sequences from diploid species B. rapa (genome A) and B. oleracea (genome C) are conserved (96–99% similarity) in subgenomes A and C of tetraploid species B. carinata (genome BC), B. juncea (genome AB), and B. napus (genome AC). Phylogenetic analysis of FRI sequences in the genus Brassica clearly discerns the lineages A/C and B, while in the family Brassicaceae, two FRI clusters discriminated by such analysis correspond to the lineages I (including the genus Arabidopsis) and II (including the genus Brassica). The origin of two FRI loci is discussed in the context of the Brassicaceae evolution via paleopolyploidy and subsequent genome reorganization.

Keywords

Brassica FRIGIDA evolution floral transition gene duplication vernalization 

Abbreviations

FRI

FRIGIDA

FLC

FLOWERING LOCUS C

aa

amino acid residues

Mya

million years ago

QTL

quantitative trait locus

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso-Blanco, C., Aart, M.G.M., Bentsink, L., Keurentjes, J.J.B., Reymond, M., Vreugdenhil, D., and Koornneef, M., What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell, 2009, vol. 21, pp. 1877–1896.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Amasino, R., Seasonal and developmental timing of flowering, Plant J., 2010, vol. 61, pp. 1001–1013.PubMedCrossRefGoogle Scholar
  3. 3.
    Wilczek, A.M., Burghardt, L.T., Cobb, A.R., Cooper, M.D., Welch, S.M., and Schmitt, J., Genetic and physiological bases for phenological responses to current and predicted climates, Phil. Trans. R. Soc. B., 2010, vol. 365, pp. 3129–3147.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Weigel, D., Natural variation in Arabidopsis: from molecular genetics to ecological genomics, Plant Physiol., 2012, vol. 158, pp. 2–22.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Song, J., Angel, A., Howard, M., and Dean, C., Vernalization — a cold-induced epigenetic switch, J. Cell Sci., 2012, vol. 125, pp. 3723–3731.PubMedCrossRefGoogle Scholar
  6. 6.
    Zou, X., Suppanz, I., Raman, H., Hou, J., Wang, J., Long, Y., Jung, C., and Meng, J., Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape, PLoS ONE, 2012, vol. 7: e45751.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Xiao, D., Zhao, J., Hou, X.L., Basnet, R.K., Carpio, D.P.D., Zhang, N.W., Bucher, J., Lin, K., Cheng, F., Wang, X.W., and Bonnema, G., The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional coexpression networks, J. Exp. Bot., 2013, vol. 64. pp. 4503–4516.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wang, N., Qian, W., Suppanz, I., Wei, L., Mao, B., Long, Y., Meng, J., Mueller, A., and Jung, C., Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.A, J. Exp. Bot., 2011, vol. 62, pp. 5641–5658.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Irwin, J.A., Lister, C., Soumpourou, E., Zhang, Y., Howell, E.C., Teakle, G., and Dean, C., Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome, BMC Plant Biol., 2012, vol. 12, p. 21.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Fadina, O.A., Pankin, A.A., and Khavkin, E.E., Molecular characterization of the flowering time gene FRIGIDA in Brassica genomes A and C, Russ. J. Plant Physiol., 2013, vol. 60, pp. 279–289.CrossRefGoogle Scholar
  11. 11.
    Fadina, O.A., Evolution of gene FRIGIDA in Brassica, Tr. po prikl. botanike, genetike i selektsii (Proc. Applied Botany, Genetics, and Selection), St. Petersburg: VIR, 2013, vol. 173, pp. 39–48.Google Scholar
  12. 12.
    Risk, J.M., Laurie, R.E., Macknight, R.C., and Day, C.L., FRIGIDA and related proteins have a conserved central domain and family specific N- and C-terminal regions that are functionally important, Plant Mol. Biol., 2010, vol. 73, pp. 493–505.PubMedCrossRefGoogle Scholar
  13. 13.
    Tamura, K., Peterson, D., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ostergaard, L. and King, G., Standardized gene nomenclature for the Brassica genus, Plant Methods, 2008, vol. 4, p. 10.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Choi, K., Kim, J., Hwang, H.J., Kim, S., Park, C., Kim, S.Y., and Lee, I., The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors, Plant Cell, 2011, vol. 23, pp. 289–303.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kemi, U., Niittyvuopio, A., Toivainen, T., Pasanen, A., Quilot-Turion, B., Holm, K., Lagercrantz, U., Savolainen, O., and Kuittinen, H., Role of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrata, New Phytol., 2013, vol. 197, pp. 323–335.PubMedCrossRefGoogle Scholar
  17. 17.
    Geraldo, N., Bäurle, I., Kidou, S.K., Hu, X., and Dean, C., FRIGIDA delays flowering in Arabidopsis via a co-transcriptional mechanism involving direct interaction with the nuclear cap binding complex, Plant Physiol., 2009, vol. 150, pp. 1611–1618.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lysak, M.A., Koch, M.A., Pecinka, A., and Schubert, I., Chromosome triplication found across the tribe Brassiceae, Genome Res., 2005, vol. 15, pp. 516–525.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tang, H., Woodhouse, M.R., Cheng, F., Schnable, J.C., Pedersen, B.S., Conant, G., Wang, X., Freeling, M., and Pires, J.C., Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy, Genetics, 2012, vol. 190, pp. 1563–1574.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Cheung, F., Trick, M., Drou, N., Lim, Y.P., Park, J.Y., Kwon, S.J., Kim, J.A., Scott, R., Pires, J.C., Paterson, A.H., Town, C., and Bancroft, I., Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence, Plant Cell, 2009, vol. 21, pp. 1912–1928.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Couvreur, T.L.P., Franzke, A., Al-Shehbaz, I.A., Bakke, F.T., Koch, M.A., and Mummenhoff, K., Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae), Mol. Biol. Evol., 2010, vol. 27, pp. 55–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Lou, P., Wu, J., Cheng, F., Cressman, L.G., Wang, X., McClung, C.R., Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa, Plant Cell, 2012. vol. 24. pp. 2415–2426.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Warwick, S.I. and Sauder, C.A., Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnl intron sequences, Can. J. Bot., 2005, vol. 83, pp. 467–483.CrossRefGoogle Scholar
  24. 24.
    Kuittinen, H., Niittyvuopio, A., Rinne, P., and Savolainen, O., Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism, Mol. Biol. Evol., 2008, vol. 25, pp. 319–329.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Agricultural BiotechnologyRussian Academy of Agricultural SciencesMoscowRussia

Personalised recommendations