Russian Journal of Plant Physiology

, Volume 61, Issue 3, pp 281–288 | Cite as

Photosynthetic efficiency and survival of Dactylis glomerata and Lolium perenne following low temperature stress

  • B. Borawska-Jarmułowicz
  • G. Mastalerczuk
  • H. M. KalajiEmail author
  • R. Carpentier
  • S. Pietkiewicz
  • S. I. Allakhverdiev
Research Papers


Resistance to low temperature is crucial for overwintering crops. In this work we compared the resistance to low temperature treatment of some varieties of two forage grass species Dactylis glomerata L. and Lolium perenne L. in order to elucidate the reason for the better resistance found in some species. The variety Amila of D. glomerata and Diament of L. perenne were more tolerant to low temperature stress during the emergence and tillering phases as compared to the varieties Amera and Gagat. The improved tolerance and ability for recovery after stress were associated with the better recovery of photosynthetic efficiency of these varieties and better survival of their shoots after low temperature stress.


Dactylis glomerata Lolium perenne chlorophyll fluorescence low temperature photosynthesis photosystem II 



photosystem II


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorenzetti, S., Tyler, B., Cooper, J.P., and Breese, E.L., Cold tolerance and winter hardiness in Lolium perenne L., J. Agric. Sci. (Cambridge), 1971, vol. 76, pp. 199–209.CrossRefGoogle Scholar
  2. 2.
    Harrison, J., Tonkinson, C., Eagles, C., and Foyer, C., Acclimation to freezing temperatures in perennial ryegrass (Lolium perenne), Acta Physiol. Plant., 1997, vol. 19, pp. 505–515.CrossRefGoogle Scholar
  3. 3.
    Borawska-Jarmułowicz, B., The response of Dactylis glomerata used in meadow mixture on the course of weather conditions in the long term, Grassland Sci. Poland, 2005, vol. 8, pp. 27–33 (in Polish).Google Scholar
  4. 4.
    Borawska-Jarmułowicz, B., Variability of morphological and biological properties of Dactylis glomerata varieties in seed production at the background of weather conditions, Grassland Sci. Poland, 2011, vol. 14, pp. 23–41 (in Polish).Google Scholar
  5. 5.
    Kalaji, M.H. and Łoboda, T., Chlorophyll Fluorescence to ‘in Plants’ Physiological State Researches, Warsaw: Warsaw University of Life Sciences — SGGW, 2009.Google Scholar
  6. 6.
    Brestic, M., Zivcak, M., Kalaji, M.H., Carpentier, R., and Allakhverdiev, S.I., Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L., Plant Physiol. Biochem., 2012, vol. 57, pp. 93–105.PubMedCrossRefGoogle Scholar
  7. 7.
    Rapacz, M., Gasior, D., Zwierzykowski, Z., Lesnieweska-Bocianowska, A., Humphreys, M.W., and Gay, A.P., Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by another culture of Festuca pratensis and Lolium multiflorum cultivars, New Phytol., 2004, vol. 162, pp. 105–114.CrossRefGoogle Scholar
  8. 8.
    Kalaji, M.H., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Strasser, R.J., and Govindjee, Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker, Photosynth. Res., 2012, vol. 114, pp. 69–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas, H. and James, A.R., Freezing tolerance and solute changes in contrasting genotypes of Lolium perenne L. acclimated to cold and drought, Ann. Bot., 1993, vol. 72, pp. 249–254.CrossRefGoogle Scholar
  10. 10.
    Kalaji, M.H., Bosa, K., Koscielniak, J., and Hossain, Z., Chlorophyll a fluorescence — a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.), OMICS, 2011, vol. 15, pp. 925–934.PubMedCrossRefGoogle Scholar
  11. 11.
    Haldimann, P., Fracheboud, Y., and Stamp, P., Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature, Plant Cell Environ., 1996, vol. 19, pp. 85–92.CrossRefGoogle Scholar
  12. 12.
    Chołuj, D., Kalaji, M.H., and Niemyska, B., Analysis of the gas exchange components in chilled tomato plants, Photosynthetica, 1997, vol. 34, pp. 583–589.CrossRefGoogle Scholar
  13. 13.
    Bokhari, U.G., The influence of stress conditions on chlorophyll content of two range grasses with contrasting photosynthetic pathways, Ann. Bot., 1976, vol. 40, pp. 969–979.Google Scholar
  14. 14.
    Wise, R.R. and Naylor, A.W., Chilling enhanced photooxidation, Plant Physiol., 1987, vol. 83, pp. 278–282.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Huner, N.P.A., Öquist, G., Hurry, V.M., Krol, M., Falk, S., and Griffith, M., Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants, Photosynth. Res., 1993, vol. 37, pp. 19–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Borawska-Jarmułowicz, B., Mastalerczuk, G., and Kalaji, M.H., Response of Dactylis glomerata to low temperature stress, Grasslands Sci. Europe, 2010, vol. 15, pp. 359–361.Google Scholar
  17. 17.
    Pramod, K. and Vinay, M., Effect of low temperature stress on photosynthesis, total soluble sugars, grain filling rate and yield in rice (Oryza sativa L.), Ind. J. Plant Physiol., 2007, vol. 12, pp. 253–260.Google Scholar
  18. 18.
    Bradbury, M. and Baker, N.R., Analysis of the induction of chlorophyll fluorescence in intact leaves and isolated thylakoids: contributions of photochemical and non-photochemical quenching, Proc. R. Soc., London, Ser. B, 1983, vol. 220, pp. 251–264.CrossRefGoogle Scholar
  19. 19.
    Smillie, R.M., Nott, R., Hetherington, S.E., and Öquist, G., Chilling injury and recovery in detached and attached leaves measured by chlorophyll fluorescence, Physiol. Plant., 1987, vol. 69, pp. 419–428.CrossRefGoogle Scholar
  20. 20.
    Hodgins, R. and Huystee, R.V., Porphyrin metabolism in chill stressed maize (Zea mays L.), J. Plant Physiol., 1986, vol. 25, pp. 326–336.Google Scholar
  21. 21.
    Allakhverdiev, S.I., Mohanty, P., and Murata, N., Dissection of photodamage at low temperature and repair in darkness suggests the existence of an intermediate form of photodamaged photosystem II, Biochemistry, 2003, vol. 42, pp. 14 277–14 283.CrossRefGoogle Scholar
  22. 22.
    Allakhverdiev, S.I. and Murata, N., Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803, Biochim. Biophys. Acta, 2004, vol. 1657, pp. 23–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Nishiyama, Y., Allakhverdiev, S.I., and Murata, N., A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II, Biochim. Biophys. Acta, 2006, vol. 1757, pp. 742–749.PubMedCrossRefGoogle Scholar
  24. 24.
    Mohanty, P., Allakhverdiev, S.I., and Murata, N., Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II, Photosynth. Res., 2007, vol. 94, pp. 217–224.PubMedCrossRefGoogle Scholar
  25. 25.
    Murata, N., Takahashi, S., Nishiyama, Y., and Allakhverdiev, S.I., Photoinhibition of photosystem II under environmental stress, Biochim. Biophys. Acta, 2007, vol. 1767, pp. 414–421.PubMedCrossRefGoogle Scholar
  26. 26.
    Murata, N., Allakhverdiev, S.I., and Nishiyama, Y., The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport, Biochim. Biophys. Acta, 2012, vol. 1817, pp. 1127–1133.PubMedCrossRefGoogle Scholar
  27. 27.
    Öquist, G., Greer, D.H., and Ögren, E., Light stress at low temperature, Photoinhibition, Kyle, J., Osmond, C.B., and Arntzen, C.J., Eds., Amsterdam: Elsevier, 1987, pp. 67–87.Google Scholar
  28. 28.
    Savitch, L.V., Gordon, G.R., and Huner, N.P.A., Feedback-limited photosynthesis and regulation of sucrose-starch accumulation during cold acclimation and low-temperature stress in a spring and winter wheat, Planta, 1997, vol. 201, pp. 18–26.CrossRefGoogle Scholar
  29. 29.
    Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L., and Huner, N.P.A., Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments, Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 222–252.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Labate, C.A. and Leegood, R.C., Limitation of photosynthesis by changes in temperature. Factors affecting the response of carbon dioxide assimilation to temperature in barley leaves, Planta, 1988, vol. 173, pp. 519–527.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • B. Borawska-Jarmułowicz
    • 1
  • G. Mastalerczuk
    • 1
  • H. M. Kalaji
    • 2
    Email author
  • R. Carpentier
    • 3
  • S. Pietkiewicz
    • 2
  • S. I. Allakhverdiev
    • 4
  1. 1.Department of AgronomyWarsaw University of Life Sciences (WULS-SGGW)WarsawPoland
  2. 2.Department of Plant PhysiologyWarsaw University of Life Sciences (WULS-SGGW)WarsawPoland
  3. 3.Groupe de Recherche en Biologie Végétale (GRBV)Université du Québec à Trois-RivièresTrois-RivièresCanada
  4. 4.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations