Skip to main content

Responses of the antioxidant defense system to drought stress in the leaves of Fargesia denudata seedlings, the staple food of the giant panda


The responses of the antioxidant defense system in plant species to drought stress are still relatively unknown. In order to further understand how the system responds to drought stress, the leaves of Fargesia denudata seedlings were investigated. Antioxidant enzyme activities, antioxidant contents, hydrogen peroxide (H2O2), superoxide anion (O ·−2 ) and MDA contents in the seedling leaves were measured under well-watered (WW), moderate drought-stressed (MD), and severe drought-stressed (SD) treatments. Although drought stress significantly increased H2O2 and O ·−2 levels in F. denudata leaves, only weak lipid peroxidation was observed. This is attributed to the higher superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) activities in F. denudata leaves during the entire drought period. Reduced and oxidized ascorbate (AsA and DHA) contents were almost not affected by drought except that DHA under SD showed an obvious increase on day 30. Furthermore, reduced glutathione (GSH) content under drought stress significantly decreased, while oxidized glutathione (GSSG) markedly increased under SD on days 30 and 45 as well as under MD on day 30; as a result, the ratio GSH/GSSG declined considerably. These results indicated that GSH was involved in scavenging H2O2 and O ·−2 under drought stress and it was more sensitive to drought stress in scavenging H2O2 and O ·−2 than AsA. As a result, a highly efficient antioxidant defense system in drought-stressed F. denudate leaves operated mainly through the synergistic functioning of SOD, CAT, APX, MDHAR, DHAR, GR, and GSH against oxidative damage.

This is a preview of subscription content, access via your institution.



ascorbate peroxidase






ascorbate oxidized form; dehydroascorbate


dehydroascorbate reductase


glutathione reductase


glutathione (reduced form)


glutathione (oxidized form)


monodehydroascorbate reductase

O ·−2 :

superoxide anion




superoxide dismutase


total ascorbate


total glutathione


  1. 1.

    Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., and Hogg, E., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, For. Ecol. Manag., 2010, vol. 259, pp. 660–684.

    Article  Google Scholar 

  2. 2.

    Pompelli, M.F., Barata-Luís, R., Vitorino, H.S., Gonçalves, E.R., Rolim, E.V., Santos, M.G., Almeida-Cortez, J.S., Ferreira, V.M., Lemos, E.E., and Endres, L., Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery, Biomass Bioenerg., 2010, vol. 34, pp. 1207–1215.

    CAS  Article  Google Scholar 

  3. 3.

    Cornic, G., Drought stress inhibits photosynthesis by decreasing stomatal aperture, not by affecting ATP synthesis, Trends Plant Sci., 2000, vol. 5, pp. 187–188.

    Article  Google Scholar 

  4. 4.

    Silva, E.N., Ferreira-Silva, S.L., Fontenele, A.V., Ribeiro, R.V., Viégas, R.A., and Silveira, J.A.G., Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants, J. Plant Physiol., 2010, vol. 167, pp. 1157–1164.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Bian, S.M. and Jiang, Y.W., Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery, Sci. Hort., 2009, vol. 120, pp. 264–270.

    CAS  Article  Google Scholar 

  6. 6.

    Uzilday, B., Turkan, I., Sekmen, A.H., Ozgur, R., and Karakaya, H.C., Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress, Plant Sci., 2012, vol. 182, pp. 59–70.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wang, S.C., Liang, D., Li, C., Hao, Y.L., Ma, F.W., and Shu, H.R., Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of droughttolerant and drought-sensitive apple rootstocks, Plant Physiol. Biochem., 2012, vol. 51, pp. 81–89.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Shan, C.J. and Liang, Z.S., Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress, Plant Sci., 2010, vol. 178, pp. 130–139.

    CAS  Article  Google Scholar 

  9. 9.

    Cakmak, I. and Marschner, H., Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves, Plant Physiol., 1992, vol. 98, pp. 1222–1227.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Bai, L.P., Sui, F.G., Ge, T.D., Sun, Z.H., Lu, Y.Y., and Zhou, G.S., Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize, Pedosphere, 2006, vol. 16, pp. 326–332.

    CAS  Article  Google Scholar 

  11. 11.

    Wang, J.X. and Ma, Z.G., Ecological Studies on Giant Panda’s Main Feed Bamboos, Chengdu: Sichuan Science and Technology Press, 1993.

    Google Scholar 

  12. 12.

    Wu, F.Z., Yang, W.Q., Wang, K.Y., Wu, N., and Lu, Y.J., Effect of stem density on leaf nutrient dynamics and nutrient use efficiency of dwarf bamboo, Pedosphere, 2009, vol. 19, pp. 496–504.

    CAS  Article  Google Scholar 

  13. 13.

    Qiao, Y.Z., Zhang, Y.B., Wang, K.Y., Wang, Y.P., Xu, Y., and Li, Q.C., A new viewpoint to understand the response of leaf dark respiration to elevated CO2 concentration, Photosynthetica, 2007, vol. 45, pp. 510–514.

    Article  Google Scholar 

  14. 14.

    Sperdouli, I. and Moustakas, M., Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress, J. Plant Physiol., 2012, doi 10.1016/j.jplph.2011.12.015

    Google Scholar 

  15. 15.

    Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases. I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  17. 17.

    Madamanchi, N.R. and Alscher, R.G., Metabolic bases for differences in sensitivity of two pea cultivars to sulfur dioxide, Plant Physiol., 1991, vol. 97, pp. 88–93.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Arrigoni, O., Dipierro, S., and Borraccino, G., Ascorbate free radical reductase, a key enzyme of the ascorbic acid system, FEBS Lett., 1981, vol. 125, pp. 242–244.

    CAS  Article  Google Scholar 

  19. 19.

    Dalton, D.A., Russell, S.A., Hanus, F., Pascoe, G.A., and Evans, H.J., Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 3811–3815.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Law, M., Charles, S.A., and Halliwell, B., Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat, Biochem. J., 1983, vol. 210, pp. 899–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. 21.

    Sgherri, C.L.M., Maffei, M., and Navari-Izzo, F., Antioxidant enzymes in wheat subjected to increasing water deficit and rewatering, J. Plant Physiol., 2000, vol. 157, pp. 273–279.

    CAS  Article  Google Scholar 

  22. 22.

    Marabottini, R., Schraml, C., Paolacci, A.R., Sorgona, A., Raschi, A., Rennenberg, H., and Badiani, M., Foliar antioxidant status of adult mediterranean oak species (Quercus ilex L. and Q. pubescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress, Environ. Pollut., 2001, vol. 115, pp. 413–423.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Deng, S.X., Zeng, M., Xiong, W., Luo, G.J., Zhang, G.Y., and Liu, P., Effects of drought stress on the antioxidant enzyme system in citrus leaves, J. Sw. Univ. (Nat. Sci. Ed.), 2009, vol. 31, pp. 61–64.

    Google Scholar 

  24. 24.

    Fu, J.M. and Huang, B.R., Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress, Environ. Exp. Bot., 2001, vol. 45, pp. 105–114.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Ozkur, O., Ozdemir, F., Bor, M., and Turkan, I., Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovate Desf. to drought, Environ. Exp. Bot., 2009, vol. 66, pp. 487–492.

    CAS  Article  Google Scholar 

  26. 26.

    Li, Y., Zhao, H.X., Duan, B.L., Korpelainen, H., and Li, C.Y., Effect of drought and ABA on growth, photosynthesis and antioxidant system of Cotinus coggygria seedlings under two different light conditions, Environ. Exp. Bot., 2011, vol. 71, pp. 107–113.

    CAS  Article  Google Scholar 

  27. 27.

    Aravind, P. and Prasad, M.N.V., Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism, Plant Physiol. Biochem., 2005, vol. 43, pp. 107–116.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Morabito, D. and Guerrier, G., The free oxygen radical scavenging enzymes and redox status in roots and leaves of Populus × euramericana in response to osmotic stress, desiccation and rehydration, J. Plant Physiol., 2000, vol. 157, pp. 74–80.

    CAS  Article  Google Scholar 

  29. 29.

    Akcay, U.C., Eercan, O., Kavas, M., Yildiz, L., Yilmaz, C., Octem, H., and Yucel, M., Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings, Plant Growth Regul., 2010, vol. 61, pp. 21–28.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. Wang.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, Y., Pan, K. et al. Responses of the antioxidant defense system to drought stress in the leaves of Fargesia denudata seedlings, the staple food of the giant panda. Russ J Plant Physiol 61, 374–383 (2014).

Download citation


  • Fargesia denudata
  • drought stress
  • antioxidant defense system
  • reactive oxygen species
  • lipid peroxidation