Russian Journal of Plant Physiology

, Volume 61, Issue 2, pp 231–237 | Cite as

Evaluating the effect of rootstocks and potassium level on photosynthetic productivity and yield of pear trees

  • K. Bosa
  • E. Jadczuk-Tobjasz
  • M. H. KalajiEmail author
  • M. Majewska
  • S. I. Allakhverdiev
Research Papers


In this experiment, leaf gas exchange, photosynthetic efficiency, area index, and chlorophyll content were measured in pear (Pyrus communis L.) trees grown on different rootstocks and potassium fertilization doses. Our results showed that trees budded on the Pyrodwarf rootstock had the biggest leaf area and the highest photosynthetic efficiency, photosynthesis rate, and chlorophyll content. There was no correlation between the applied potassium fertilization dosage and the photosynthetic efficiency of the trees. This paper is addressed to discuss various mechanisms and selected factors responsible for pear tree photosynthetic productivity.


Pyrus communis chlorophyll content chlorophyll fluorescence LAI photosynthesis photosystem II 





maximum quantum yield of PSII


stomatal conductance


leaf area index


performance index


net photosynthetic rate


photosystem II


trunk cross-sectional area


yield efficiency of PSII of light-adapted leaves


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zygmuntowska, K. and Jadczuk-Tobjasz, E., Influence of different potassium fertilization on growth and cropping of five pear cultivars, Zesz. Nauk. Inst. Sadow. Kwiac., 2008, vol. 16, pp. 83–89 (in Polish).Google Scholar
  2. 2.
    Bright, J., Apple and pear nutrition, Primefact, 2005, vol. 85, pp. 1–12.Google Scholar
  3. 3.
    Van Arkel, P., Fertilization of apple and pear in the Netherlands, XXVII Horticultural Seminar in Limanowa, Poland, 2007, pp. 61–64.Google Scholar
  4. 4.
    Zhao, D.L., Oosterhuis, D.M., and Bednarz, C.W., Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants, Photosynthetica, 2001, vol. 39, pp. 103–109.CrossRefGoogle Scholar
  5. 5.
    Basile, B., Redel, E.J., Weinbaum, S.A., and Dejong, T.M., Leaf potassium concentration, CO2 exchange and light interception in almond trees (Prunus dulcis (Mill.) D.A. Webb), Sci. Hortic., 2003, vol. 98, pp. 185–194.CrossRefGoogle Scholar
  6. 6.
    Giacobbo, C.L., Fachinello, J.C., Massai, R., Remorini, D., and Loreti, F., Growth and productive behavior of ‘Doyenné du Comice’ pear trees grown on two rootstocks and two water regimes, Acta Hortic., 2008, vol. 800, pp. 785–792.Google Scholar
  7. 7.
    Kalaji, M.H. and Pietkiewicz, S., Some physiological indices to be exploited as a crucial tool in plant breeding, Plant Breed. Seeds Sci., 2004, vol. 49, pp. 19–39.Google Scholar
  8. 8.
    Kalaji, M.H., Bosa, K., Kościelniak, J., and Hossain, Z., Chlorophyll a fluorescence — a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.), OMICS, 2011, vol. 15, pp. 925–934.PubMedCrossRefGoogle Scholar
  9. 9.
    Kalaji, M.H., Govindjee, Bosa, K., Kościelniak, J., and Zuk-Gołaszewska, K., Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces, Environ. Exp. Bot., 2011, vol. 73, pp. 64–72.CrossRefGoogle Scholar
  10. 10.
    Costes, E., Lauri, P.E., and Regnard, J.L., Analyzing fruit tree architecture: Implications for tree management and fruit production, Horticultural Reviews, vol. 32, Janick, J., ed., New York: John Wiley & Sons, 2006.Google Scholar
  11. 11.
    Peper, P.J. and McPherson, E.G., Evaluation of four methods for estimating leaf area of isolated trees, Urban For. Urban Green., 2003, vol. 2, pp. 019–029.CrossRefGoogle Scholar
  12. 12.
    Brestic, M., Zivcak, M., Kalaji, M.H., Carpentier, R., and Allakverdiev, S.I., Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L., Plant Physiol. Biochem., 2012, vol. 57, pp. 93–105.PubMedCrossRefGoogle Scholar
  13. 13.
    Kalaji, M.H., Carpentier, R., Allakhverdiev, S.I., and Bosa, K., Fluorescence parameters as an early indicator of light stress in barley, J. Photochem. Photobiol. B: Biol., 2012, vol. 112, pp. 1–6.CrossRefGoogle Scholar
  14. 14.
    Kalaji, M.H., Goltsev, V., Bosa, K., Allakverdiev, S.I., Strasser, R.J., and Govindjee, Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker, Photosynth. Res., 2012, vol. 114, pp. 69–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Lin, M. and Wang, Z., Studies on photosynthesis characteristic in two pear varieties, Acta Agric. Bor. Sin., 2007, vol. 22, pp. 44–47.Google Scholar
  16. 16.
    Cui, N., Du, T., Li, F., Tong, L., Kang, S., Wang, M., Liu, X., and Li, Z., Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree, Agr. Water Manag., 2009, vol. 96, pp. 1237–1246.CrossRefGoogle Scholar
  17. 17.
    Lin, J., Yang, Q., Wang, Z., Li, X., Fu, R., and Chang, Y., Changes of leaf photosynthesis and fruit quality of Cuiguan pears by bagging, Jiangsu J. Agric. Sci., 2010, vol. 6, p. 40.Google Scholar
  18. 18.
    Restrepo-Diaz, H., Melgar, J.C., and Lombardini, L., Ecophysiology of horticultural crops: an overview, Agron. Colombiana, 2010, vol. 28, pp. 71–79.Google Scholar
  19. 19.
    Losciale, P., Zibordi, M., Manfrini, L., and Grappadelli, L.C., Effects of rootstock on pear photosynthetic efficiency, Acta Hortic. (ISHS), 2008, vol. 800, pp. 241–248.Google Scholar
  20. 20.
    Sabajeviene, G., Kviklys, D., and Duchovskis, P., Rootstock effect on photosynthetic pigment system formation in leaves of apple cv.’ Auksis’, Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture, Sodininkyste Darzininkyst, 2006, vol. 25, pp. 357–363.Google Scholar
  21. 21.
    Lepsis, J. and Drudze, I., Evaluation of seven pear rootstocks in Latvia, Acta Hortic. (ISHS), 2011, vol. 903, pp. 457–461.Google Scholar
  22. 22.
    Perez, C., Val, J., and Monge, E., Photosynthetic changes of “Prunus avium L.” grafted on different rootstocks in relation to mineral deficiencies, Acta Hortic. (ISHS), 1997, vol. 448, pp. 81–85.Google Scholar
  23. 23.
    Martinazzo, E.G., Perboni, A.T., Farias, M.E., Bianchi, V.J., and Bacarin, M.A., Photosynthetic activity in the rootstock of hybrid peach trees submitted to water restriction and flooding, Braz. J. Plant Physiol., 2011, vol. 23, pp. 231–236.CrossRefGoogle Scholar
  24. 24.
    Pervez, H., Makhdum, M.I., Ashraf, M., and Shababud-Din, Influence of potassium nutrition on leaf area index in cotton (Gossypium hirsutum L.) under an arid environment, Pak. J. Bot., 2006, vol. 38, pp. 1085–1092.Google Scholar
  25. 25.
    Jin, S.H., Huang, J.Q., Li, X.Q., Zheng, B.S., Wu, J.S., Wang, Z.J., Liu, G.H., and Chen, M., Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis, Tree Physiol., 2011, vol. 31, pp. 1142–1151.PubMedCrossRefGoogle Scholar
  26. 26.
    Jordan-Meille, L. and Pellerin, S., Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency, Plant Soil, 2004, vol. 265, pp. 75–92.CrossRefGoogle Scholar
  27. 27.
    Scherer, H.W., Schubert, S., and Mengel, K., Effect of potassium nutrition on growth rate, carbohydrate content and water retention in young wheat plants, Z. Pflanzenernähr. Bodenk., 1982, vol. 145, pp. 237–245.CrossRefGoogle Scholar
  28. 28.
    Lewko, J., Ścibisz, K., and Sadowski, A., Performance of two pear cultivars on six different rootstocks in the nursery, Acta Hortic. (ISHS), 2007, vol. 732, pp. 227–231.Google Scholar
  29. 29.
    Aizpurua, A., Domingo, M., Besga, G., and Amenaba, R., Effect of potassium and magnesium fertilization on yield and nutritional status of conference pear trees, Acta Hortic. (ISHS), 1997, vol. 448, pp. 211–218.Google Scholar
  30. 30.
    Laclau, J.P., Almeida, J.C.R., Gonçalves, J.L.M., Saint-André, L., Ventura, M., Ranger, J., Moreira, R.M., and Nouvellon, Y., Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations, Tree Physiol., 2009, vol. 29, pp. 111–124.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • K. Bosa
    • 1
  • E. Jadczuk-Tobjasz
    • 1
  • M. H. Kalaji
    • 2
    Email author
  • M. Majewska
    • 1
  • S. I. Allakhverdiev
    • 3
  1. 1.Department of PomologyWarsaw University of Life Sciences SGGWWarsawPoland
  2. 2.Department of Plant PhysiologyWarsaw University of Life Sciences SGGWWarsawPoland
  3. 3.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations