Skip to main content
Log in

Mitochondrial retrograde regulation of HSP101 expression in Arabidopsis thaliana under heat stress and amiodarone action

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Heat stress in plants elevates the potential across the inner mitochondrial membrane (mtΔψ) and activates the expression of heat shock proteins (HSPs). The treatment of Saccharomyces cerevisiae cells with amiodarone (AMD) elevated the cytosolic Ca2+ level ([Ca2+]cyt) in parallel with (mtΔψ) increase and led to the induction of Hsp104 synthesis. The hyperpolarization was presumably due to the increase in [Ca2+]cyt. In the present study the effects of AMD (0–100 μM) on cell viability, HSP expression, mtΔψ, and [Ca2+]cyt were investigated using the cell culture of Arabidopsis thaliana (L.) Heynh. The treatment of cultured cells with AMD led to the elevation of [Ca2+]cyt, which was accompanied by the increase in mtΔψ and by activation of HSP101 expression. The increase in [Ca2+]cyt and expression of HSP101 were also observed upon the treatment with the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone, 4 μM) known to diminish mtΔψ. The results suggest that plant cell mitochondria modulate the cytosolic Ca2+ level by changing the potential at the inner mitochondrial membrane and, thereby, participate in the retrograde regulation of HSP101 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMD:

amiodarone (2-butyl-3-(3,5-diiodo-4-diethylaminoethoxybenzoyl) benzofuran)

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

FDA:

fluorescein diacetate

HSP:

heat shock protein

JC:

1-5,5′,6,6′-tetrachloro-1,1′,2,2′-tetraethyl-benzimidazol-carbocyanine

mtΔϖ:

potential across the inner mitochondrial membrane

PI:

propidium iodide

RT:

PCR-reverse transcription polymerase chain reaction

SE:

standard error

TTC:

2,3,5-triphenyltetrazolium chloride

[Ca2+]mit:

concentration of mitochondrial Ca2+

[Ca2+]cyt:

concentration of cytosolic Ca2+

References

  1. Millar, A.H., Whelan, J., Soole, K.L., and Day, D.A., Organization and regulation of mitochondrial respiration in plants, Annu. Rev. Plant Biol., 2011, vol. 62, pp. 79–104.

    Article  CAS  PubMed  Google Scholar 

  2. Yurina, N.P. and Odintsova, M.S., Signal transduction pathways of plant mitochondria: retrograde regulation, Russ. J. Plant Physiol., 2010, vol. 57, pp. 7–19.

    Article  CAS  Google Scholar 

  3. Saidi, Y., Finka, A., and Goloubinoff, P., Heat perception and signaling in plants: a tortuous path to thermotolerance, New Phytol., 2011, vol. 190, pp. 556–565.

    Article  CAS  PubMed  Google Scholar 

  4. Subbaiah, C.C., Bush, D.S., and Sachs, M.M., Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells, Plant Physiol., 1998, vol. 118, pp. 759–771.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Logan, D. and Knight, M.R., Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants, Plant Physiol., 2003, vol. 133, pp. 21–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schwarzländer, M., Fricker, M.D., and Sweetlove, L.J., Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge, Biochim. Biophys. Acta, 2009, vol. 1787, pp. 468–475.

    Article  PubMed  Google Scholar 

  7. Krause, M. and Durner, J., Harpin inactivates mitochondria in Arabidopsis suspension cells, Mol. Plant-Microbe Interact., 2004, vol. 17, pp. 131–139.

    Article  CAS  PubMed  Google Scholar 

  8. Banti, V., Mafessoni, F., Loreti, E., Alpi, A., and Perata, P., The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis, Plant Physiol., 2010, vol. 152, pp. 1471–1483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kuzmin, E.V., Karpova, O.V., Elthon, T.E., and Newton, K.J., Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins, J. Biol. Chem., 2004, vol. 279, pp. 20 672–20 677.

    Article  CAS  Google Scholar 

  10. Kim, M., Lee, U., Small, I., des Francs-Small C.C., and Vierling, E., Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101, Plant Cell, 2012, vol. 24, pp. 3349–3365.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M., Rachenko, E.I., Knorre, D.A., and Voinikov, V.K., Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae? Curr. Genet., 2005, vol. 48, pp. 44–59.

    Article  CAS  PubMed  Google Scholar 

  12. Rikhvanov, E.G., Gamburg, K.Z., Varakina, N.N., Rusaleva, T.M., Fedoseeva, I.V., Tauson, E.L., Stupnikova, I.V., Stepanov, A.V., Borovskii, G.B., and Voinikov, V.K., Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture, Plant J., 2007, vol. 52, pp. 763–778.

    Article  CAS  PubMed  Google Scholar 

  13. Balogh, G., Horvath, I., Nagy, E., Hoyk, Z., Benko, S., Bensaude, O., and Vigh, L., The hyperfluidization of mammalian cell membrane acts as a signal to initiate the heat shock protein response, FEBS J., 2005, vol. 272, pp. 6077–6086.

    Article  CAS  PubMed  Google Scholar 

  14. Korshunov, S.S., Skulachev, V.P., and Starkov, A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 1997, vol. 416, pp. 15–18.

    Article  CAS  PubMed  Google Scholar 

  15. Robb-Gaspers, L.D., Burnett, P., Rutter, G.A., Denton, R.M., Rizzuto, R., and Thomas, A.P., Integrating cytosolic calcium signals into mitochondrial metabolic responses, EMBO J., 1998, vol. 17, pp. 4987–5000.

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, S.S., Ton, V.K., Beaudry, V., Rulli, S., Cunningham, K., and Rao, R., Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis, J. Biol. Chem., 2003, vol. 278, pp. 28 831–28 839.

    Article  CAS  Google Scholar 

  17. Pozniakovsky, A.I., Knorre, D.A., Markova, O.V., Hyman, A.A., Skulachev, V.P., and Severin, F.F., Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast, J. Cell Biol., 2005, vol. 168, pp. 257–269.

    Article  CAS  PubMed  Google Scholar 

  18. Fedoseeva, I.V., Pyatrikas, D.V., Varakina, N.N., Rusaleva, T.M., Stepanov, A.V., Rikhvanov, E.G., Borovskii, G.B., and Voinikov, V.K., Effect of amiodarone on thermotolerance and Hsp104p synthesis in the yeast Saccharomyces cerevisiae, Biochemistry (Moscow), 2012, vol. 77, pp. 78–86.

    CAS  PubMed  Google Scholar 

  19. Enikeev, A.G., Vysotskaya, E.F., Leonova, L.A., and Gamburg, K.Z., Viability assay with 2,3,5-triphenyltetrazolium chloride in plant cell cultures, Russ. J. Plant Physiol., 1995, vol. 42, pp. 372–375.

    CAS  Google Scholar 

  20. Reape, T.J., Molony, E.M., and McCabe, P.F., Programmed cell death in plants: distinguishing between different modes, J. Exp. Bot., 2008, vol. 59, pp. 435–444.

    Article  CAS  PubMed  Google Scholar 

  21. Lowry, O.H., Rosebrough, N.I., Farr, A.L., and Randell, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  22. Timmons, T.M. and Dunbar, B.S., Protein blotting and immunodetection, Methods Enzymol., 1990, vol. 182, pp. 679–701.

    CAS  PubMed  Google Scholar 

  23. Roy, S.S. and Hajnóczky, G., Calcium, mitochondria and apoptosis studied by fluorescence measurements, Methods, 2008, vol. 46, pp. 213–223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lemasters, J. and Ramshesh, V., Imaging of mitochondrial polarization and depolarization with cationic fluorophores, Methods Cell Biol., 2007, vol. 80, pp. 283–295.

    Article  CAS  PubMed  Google Scholar 

  25. Paredes, R.M., Etzler, J.C., Watts, L.T., and Lechleiter, J.D., Chemical calcium indicators, Methods, 2008, vol. 46, pp. 143–151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Queitsch, C., Hong, S.W., Vierling, E., and Lindquist, S., Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis, Plant Cell, 2000, vol. 12, pp. 479–492.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Biyasheva, A.E., Molotkovskii, Yu.G., and Mamonov, L.K., Increase of free Ca2+ level in cytosol of plant protoplasts under heat stress: the relation with Ca2+ homeostasis, Russ. Plant Physiol., 1993, vol. 40, pp. 613–618.

    CAS  Google Scholar 

  28. Maresova, L., Muend, S., Zhang, Y.Q., Sychrova, H., and Rao, R., Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone, J. Biol. Chem., 2009, vol. 284, pp. 2795–2802.

    Article  CAS  PubMed  Google Scholar 

  29. Kader, M.A. and Lindberg, S., Cytosolic calcium and pH signaling in plants under salinity stress, Plant Signal Behav., 2010, vol. 5, pp. 233–238.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Denton, R.M., Regulation of mitochondrial dehydrogenases by calcium ions, Biochim. Biophys. Acta, 2009, vol. 1787, pp. 1309–1316.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Pyatrikas.

Additional information

Original Russian Text © D.V. Pyatrikas, E.G. Rikhvanov, I.V. Fedoseeva, N.N. Varakina, T.M. Rusaleva, E.L. Tauson, A.V. Stepanov, G.B. Borovskii, V.K. Voinikov, 2014, published} in Fiziologiya Rastenii, 2014, Vol. 61, No. 1, pp. 88–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyatrikas, D.V., Rikhvanov, E.G., Fedoseeva, I.V. et al. Mitochondrial retrograde regulation of HSP101 expression in Arabidopsis thaliana under heat stress and amiodarone action. Russ J Plant Physiol 61, 80–89 (2014). https://doi.org/10.1134/S1021443714010117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714010117

Keywords

Navigation