Advertisement

Russian Journal of Plant Physiology

, Volume 61, Issue 1, pp 80–89 | Cite as

Mitochondrial retrograde regulation of HSP101 expression in Arabidopsis thaliana under heat stress and amiodarone action

  • D. V. Pyatrikas
  • E. G. Rikhvanov
  • I. V. Fedoseeva
  • N. N. Varakina
  • T. M. Rusaleva
  • E. L. Tauson
  • A. V. Stepanov
  • G. B. Borovskii
  • V. K. Voinikov
Research Papers

Abstract

Heat stress in plants elevates the potential across the inner mitochondrial membrane (mtΔψ) and activates the expression of heat shock proteins (HSPs). The treatment of Saccharomyces cerevisiae cells with amiodarone (AMD) elevated the cytosolic Ca2+ level ([Ca2+]cyt) in parallel with (mtΔψ) increase and led to the induction of Hsp104 synthesis. The hyperpolarization was presumably due to the increase in [Ca2+]cyt. In the present study the effects of AMD (0–100 μM) on cell viability, HSP expression, mtΔψ, and [Ca2+]cyt were investigated using the cell culture of Arabidopsis thaliana (L.) Heynh. The treatment of cultured cells with AMD led to the elevation of [Ca2+]cyt, which was accompanied by the increase in mtΔψ and by activation of HSP101 expression. The increase in [Ca2+]cyt and expression of HSP101 were also observed upon the treatment with the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone, 4 μM) known to diminish mtΔψ. The results suggest that plant cell mitochondria modulate the cytosolic Ca2+ level by changing the potential at the inner mitochondrial membrane and, thereby, participate in the retrograde regulation of HSP101 expression.

Keywords

Arabidopsis thaliana cell culture amiodarone mitochondria HSP101 thermotolerance 

Abbreviations

AMD

amiodarone (2-butyl-3-(3,5-diiodo-4-diethylaminoethoxybenzoyl) benzofuran)

CCCP

carbonyl cyanide m-chlorophenylhydrazone

FDA

fluorescein diacetate

HSP

heat shock protein

JC

1-5,5′,6,6′-tetrachloro-1,1′,2,2′-tetraethyl-benzimidazol-carbocyanine

mtΔϖ

potential across the inner mitochondrial membrane

PI

propidium iodide

RT

PCR-reverse transcription polymerase chain reaction

SE

standard error

TTC

2,3,5-triphenyltetrazolium chloride

[Ca2+]mit

concentration of mitochondrial Ca2+

[Ca2+]cyt

concentration of cytosolic Ca2+

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Millar, A.H., Whelan, J., Soole, K.L., and Day, D.A., Organization and regulation of mitochondrial respiration in plants, Annu. Rev. Plant Biol., 2011, vol. 62, pp. 79–104.PubMedCrossRefGoogle Scholar
  2. 2.
    Yurina, N.P. and Odintsova, M.S., Signal transduction pathways of plant mitochondria: retrograde regulation, Russ. J. Plant Physiol., 2010, vol. 57, pp. 7–19.CrossRefGoogle Scholar
  3. 3.
    Saidi, Y., Finka, A., and Goloubinoff, P., Heat perception and signaling in plants: a tortuous path to thermotolerance, New Phytol., 2011, vol. 190, pp. 556–565.PubMedCrossRefGoogle Scholar
  4. 4.
    Subbaiah, C.C., Bush, D.S., and Sachs, M.M., Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells, Plant Physiol., 1998, vol. 118, pp. 759–771.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Logan, D. and Knight, M.R., Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants, Plant Physiol., 2003, vol. 133, pp. 21–24.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Schwarzländer, M., Fricker, M.D., and Sweetlove, L.J., Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge, Biochim. Biophys. Acta, 2009, vol. 1787, pp. 468–475.PubMedCrossRefGoogle Scholar
  7. 7.
    Krause, M. and Durner, J., Harpin inactivates mitochondria in Arabidopsis suspension cells, Mol. Plant-Microbe Interact., 2004, vol. 17, pp. 131–139.PubMedCrossRefGoogle Scholar
  8. 8.
    Banti, V., Mafessoni, F., Loreti, E., Alpi, A., and Perata, P., The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis, Plant Physiol., 2010, vol. 152, pp. 1471–1483.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kuzmin, E.V., Karpova, O.V., Elthon, T.E., and Newton, K.J., Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins, J. Biol. Chem., 2004, vol. 279, pp. 20 672–20 677.CrossRefGoogle Scholar
  10. 10.
    Kim, M., Lee, U., Small, I., des Francs-Small C.C., and Vierling, E., Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101, Plant Cell, 2012, vol. 24, pp. 3349–3365.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M., Rachenko, E.I., Knorre, D.A., and Voinikov, V.K., Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae? Curr. Genet., 2005, vol. 48, pp. 44–59.PubMedCrossRefGoogle Scholar
  12. 12.
    Rikhvanov, E.G., Gamburg, K.Z., Varakina, N.N., Rusaleva, T.M., Fedoseeva, I.V., Tauson, E.L., Stupnikova, I.V., Stepanov, A.V., Borovskii, G.B., and Voinikov, V.K., Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture, Plant J., 2007, vol. 52, pp. 763–778.PubMedCrossRefGoogle Scholar
  13. 13.
    Balogh, G., Horvath, I., Nagy, E., Hoyk, Z., Benko, S., Bensaude, O., and Vigh, L., The hyperfluidization of mammalian cell membrane acts as a signal to initiate the heat shock protein response, FEBS J., 2005, vol. 272, pp. 6077–6086.PubMedCrossRefGoogle Scholar
  14. 14.
    Korshunov, S.S., Skulachev, V.P., and Starkov, A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 1997, vol. 416, pp. 15–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Robb-Gaspers, L.D., Burnett, P., Rutter, G.A., Denton, R.M., Rizzuto, R., and Thomas, A.P., Integrating cytosolic calcium signals into mitochondrial metabolic responses, EMBO J., 1998, vol. 17, pp. 4987–5000.PubMedCrossRefGoogle Scholar
  16. 16.
    Gupta, S.S., Ton, V.K., Beaudry, V., Rulli, S., Cunningham, K., and Rao, R., Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis, J. Biol. Chem., 2003, vol. 278, pp. 28 831–28 839.CrossRefGoogle Scholar
  17. 17.
    Pozniakovsky, A.I., Knorre, D.A., Markova, O.V., Hyman, A.A., Skulachev, V.P., and Severin, F.F., Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast, J. Cell Biol., 2005, vol. 168, pp. 257–269.PubMedCrossRefGoogle Scholar
  18. 18.
    Fedoseeva, I.V., Pyatrikas, D.V., Varakina, N.N., Rusaleva, T.M., Stepanov, A.V., Rikhvanov, E.G., Borovskii, G.B., and Voinikov, V.K., Effect of amiodarone on thermotolerance and Hsp104p synthesis in the yeast Saccharomyces cerevisiae, Biochemistry (Moscow), 2012, vol. 77, pp. 78–86.PubMedGoogle Scholar
  19. 19.
    Enikeev, A.G., Vysotskaya, E.F., Leonova, L.A., and Gamburg, K.Z., Viability assay with 2,3,5-triphenyltetrazolium chloride in plant cell cultures, Russ. J. Plant Physiol., 1995, vol. 42, pp. 372–375.Google Scholar
  20. 20.
    Reape, T.J., Molony, E.M., and McCabe, P.F., Programmed cell death in plants: distinguishing between different modes, J. Exp. Bot., 2008, vol. 59, pp. 435–444.PubMedCrossRefGoogle Scholar
  21. 21.
    Lowry, O.H., Rosebrough, N.I., Farr, A.L., and Randell, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  22. 22.
    Timmons, T.M. and Dunbar, B.S., Protein blotting and immunodetection, Methods Enzymol., 1990, vol. 182, pp. 679–701.PubMedGoogle Scholar
  23. 23.
    Roy, S.S. and Hajnóczky, G., Calcium, mitochondria and apoptosis studied by fluorescence measurements, Methods, 2008, vol. 46, pp. 213–223.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lemasters, J. and Ramshesh, V., Imaging of mitochondrial polarization and depolarization with cationic fluorophores, Methods Cell Biol., 2007, vol. 80, pp. 283–295.PubMedCrossRefGoogle Scholar
  25. 25.
    Paredes, R.M., Etzler, J.C., Watts, L.T., and Lechleiter, J.D., Chemical calcium indicators, Methods, 2008, vol. 46, pp. 143–151.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Queitsch, C., Hong, S.W., Vierling, E., and Lindquist, S., Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis, Plant Cell, 2000, vol. 12, pp. 479–492.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Biyasheva, A.E., Molotkovskii, Yu.G., and Mamonov, L.K., Increase of free Ca2+ level in cytosol of plant protoplasts under heat stress: the relation with Ca2+ homeostasis, Russ. Plant Physiol., 1993, vol. 40, pp. 613–618.Google Scholar
  28. 28.
    Maresova, L., Muend, S., Zhang, Y.Q., Sychrova, H., and Rao, R., Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone, J. Biol. Chem., 2009, vol. 284, pp. 2795–2802.PubMedCrossRefGoogle Scholar
  29. 29.
    Kader, M.A. and Lindberg, S., Cytosolic calcium and pH signaling in plants under salinity stress, Plant Signal Behav., 2010, vol. 5, pp. 233–238.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Denton, R.M., Regulation of mitochondrial dehydrogenases by calcium ions, Biochim. Biophys. Acta, 2009, vol. 1787, pp. 1309–1316.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. V. Pyatrikas
    • 1
  • E. G. Rikhvanov
    • 1
  • I. V. Fedoseeva
    • 1
  • N. N. Varakina
    • 1
  • T. M. Rusaleva
    • 1
  • E. L. Tauson
    • 1
  • A. V. Stepanov
    • 1
  • G. B. Borovskii
    • 1
  • V. K. Voinikov
    • 1
  1. 1.Siberian Institute of Plant Physiology and Biochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations