Skip to main content
Log in

The effects of overexpression of formaldehyde dehydrogenase gene from Brevibacillus brevis on the physiological characteristics of tobacco under formaldehyde stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The faldh gene encodes the Brevibacillus brevis glutathione-dependent formaldehyde dehydrogenase (FALDH), an enzyme involved in formaldehyde metabolism. In the present work, we have investigated the physiological characteristics of transgenic faldh tobacco under formaldehyde stress. Overexpression of B. brevis FALDH confers tobacco tolerance to high HCHO concentrations. The transgenic tobacco lines had the higher biomass, produced the higher content of total proteins and soluble sugars, the lower levels of MDA, protein carbonyl (PC), and H2O2 as compared with the wild-type tobacco under HCHO stress. The contents of chlorophyll (Chl), including Chl a, Chl b, and the ratio of Chl a/b, and the content of anthocyanidin in transgenic plants under HCHO stress were also higher than that in wild-type tobacco. These results show that high HCHO tolerance and changes of physiological characteristics related to stress tolerance were due to the overexpressing of FALDH in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FALDH:

glutathione-dependent formaldehyde dehydrogenase

C1:

one carbon

Chl:

chlorophyll

DNPH:

dinitrophenylhydrazine

Km:

kanamycin

PC:

protein carbonyl

TBA:

thiobarbituric acid

WT:

wild type

References

  1. Blunden, G., Carpenter, B.G., Adrian-Romero, M., Yang, M.H., and Tyihak, E., Formaldehyde in the plant kingdom, Acta Biol. Hung., 1998, vol. 49, pp. 239–246.

    PubMed  CAS  Google Scholar 

  2. Trezl, L., Hullan, L., Szarvas, T., Csiba, A., and Szende, B., Determination of endogenous formaldehyde in plants (fruits) bound to L-arginine and its relation to the folate cycle, photosynthesis and apoptosis, Acta Biol. Hung., 1998, vol. 49, pp. 253–263.

    PubMed  CAS  Google Scholar 

  3. Giese, M., Bauer-Doranth, U., Langebartels, C., and Sandermann, H., Jr., Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures, Plant Physiol., 1994, vol. 104, pp. 1301–1309.

    PubMed  CAS  Google Scholar 

  4. Schmitz, H., Hilgers, U., and Weidner, M., Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification, New Phytol., 2000, vol. 147, pp. 307–315.

    Article  CAS  Google Scholar 

  5. Achkor, H., Diaz, M., Fernandez, M.R., Biosca, J.A., Pares, X., and Martinez, M.C., Enhanced formaldehyde detoxification by overexpression of glutathionedependent formaldehyde dehydrogenase from Arabidopsis, Plant Physiol., 2003, vol. 132, pp. 2248–2255.

    Article  PubMed  CAS  Google Scholar 

  6. Li, R., Moore, M., Bonham-Smith, P.C., and King, J., Overexpression of formate dehydrogenase in Arabidopsis thaliana resulted in plants tolerant to high concentrations of formate, J. Plant Physiol., 2002, vol. 159, pp. 1069–1076.

    Article  CAS  Google Scholar 

  7. Chen, L.M., Yurimoto, H., Li, K.Z., Orita, I., Akita, M., Kato, N., Sakai, Y., and Izui, K., Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes, BoiSci. Biotechnol. Biochem., 2010, vol. 74, pp. 627–635.

    Article  CAS  Google Scholar 

  8. Song, Z.B., Orita, I., Yin, F., Yurimoto, H., Kato, N., Sakai, Y., Izui, K., Li, K.Z., and Chen, L.M., Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde, Biotechnol. Lett., 2010, vol. 32, pp. 1541–1548.

    Article  PubMed  CAS  Google Scholar 

  9. Mutters, R.G., Madore, M., and Bytnerowicz, M., Formaldehyde exposure affects growth and metabolism of common bean, Air Waste, 1993, vol. 43, pp. 113–116.

    Article  CAS  Google Scholar 

  10. Nian, H., Meng, Q., Zhang, W., and Chen, L., Overexpression of the formaldehyde dehydrogenase gene from Brevibacillus brevis to enhance formaldehyde tolerance and detoxification of tobacco, Appl. Biochem. Biotechnol., 2013, vol. 169, pp. 170–180.

    Article  PubMed  CAS  Google Scholar 

  11. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  12. Seifer, S., Dayton, S., Novic, B., and Muntwyler, E., Estimation of glycogen with anthrone reagent, Arch. Biochem., 1950, vol. 25, pp. 191–200.

    Google Scholar 

  13. Baccouch, S., Chaoui, A., and Ferjani, E.E., Nickelinduced oxidative damage and antioxidant responses in Zea mays shoots, Plant Physiol. Biochem., 1998, vol. 36, pp. 689–694.

    Article  CAS  Google Scholar 

  14. Gurel, A., Coskun, O., Armutcu, F., Kanter, M., and Ozen, O.A., Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus: biochemical and histological studies, J. Chem. Neuroanat., 2005, vol. 29, pp. 173–178.

    Article  PubMed  CAS  Google Scholar 

  15. Gay, C.A. and Gebicki, J.M., Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method, Anal. Biochem., 2003, vol. 315, pp. 29–35.

    Article  PubMed  CAS  Google Scholar 

  16. Strain, H.H., Cope, B.T., and Svec, W.A., Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls, Methods Enzymol., 1971, vol. 23, pp. 452–476.

    Article  Google Scholar 

  17. Madhusudan, R. and Ravisankar, G.A., Gradients of anthocyanin in cell aggregates of Daucus carota in suspension cultures, Biotechnol. Lett., 1996, vol. 18, pp. 1253–1256.

    Article  Google Scholar 

  18. Wang, S.S., Song, Z.B., Sun, Z., Zhang, J., Mei, Y., Nian, H.J., Li, K.Z., and Chen, L.M., The effects of formaldehyde stress on the physiological characteristics and gene expression associated with photosynthesis in Arabidopsis thaliana, Plant Mol. Biol. Rep., 2012, vol. 30, pp. 1291–1302.

    Article  CAS  Google Scholar 

  19. Chen, Q., Zhang, X.D., Wang, S.S., Wang, Q.F., Wang, G.Q., Nian, H.J., Li, K.Z., Yu, Y.X., and Chen, L.M., Transcriptional and physiological changes of alfalfa in response to aluminum stress, J. Agric. Sci., 2011, vol. 149, pp. 737–751.

    Article  CAS  Google Scholar 

  20. Nian, H., Wang, G., and Chen, L., Physiological and transcriptional analysis of the effects of aluminum stress on Cryptococcus humicola, World J. Microbiol. Biotechnol., 2012, vol. 28, pp. 2319–2329.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Chen.

Additional information

This text was submitted by the authors in English.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nian, H.J., Meng, Q.C., Cheng, Q. et al. The effects of overexpression of formaldehyde dehydrogenase gene from Brevibacillus brevis on the physiological characteristics of tobacco under formaldehyde stress. Russ J Plant Physiol 60, 764–769 (2013). https://doi.org/10.1134/S1021443713060083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713060083

Keywords

Navigation