Skip to main content
Log in

Isolation and characterization of an arabidopsis drought-resistant mutant vrm1

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Drought is the major abiotic stress restricting plant growth. To gain insight into the regulatory mechanisms for drought stress tolerance, we performed a genetic screen for identifying Arabidopsis (Arabidopsis thaliana) drought-resistant mutants. A drought-resistant mutant vrm1 was isolated because of its increased root growth and fresh weight under drought stress. Compared with the wild type (WT), the vrm1 mutant was more resistant to drought stress. The vrm1 plants showed the higher levels of free proline and soluble sugars and the lower relative stomatal conductance as well as the lower water loss rate than the WT under drought stress. Moreover, the higher transcription levels of drought stress-responsive genes NCED3, RD22, RD29A, and COR15A were detected in vrm1 plants subjected to drought and mannitol stresses as compared with WT plants. These results suggest that increased drought resistance of the vrm1 mutant was associated with, at least in part, the higher expression of these drought stress-responsive genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Col-0:

Colombia-0

EMS:

ethyl methane sulfonate

vrm1 :

drought-resistant mutant

WT:

wild type

References

  1. Neumann, P.M., Coping mechanisms for crop plants in drought-prone environments, Ann. Bot., 2008, vol. 101, pp. 901–907.

    Article  PubMed  CAS  Google Scholar 

  2. Comstock, J.P., Hydraulic and chemical signaling in the control of stomatal conductance and transpiration, J. Exp. Bot., 2002, vol. 53, pp. 195–200.

    Article  PubMed  CAS  Google Scholar 

  3. Harb, A., Krishnan, A., Amavaram, M.M.R., and Pereira, A., Molecular and physiological analysis of drought stress in Arabidopsis reveals early response leading to acclimation in plant growth, Plant Physiol., 2010, vol. 154, pp. 1254–1271.

    Article  PubMed  CAS  Google Scholar 

  4. Qin, F., Sakuma, Y., Tran, L.S.P., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., Miyazono, K.I., Tanokura, M., Shinozaki, K., and Yamaguchi-Shinozaki, M., Arabidopsis DREB2A-interacting proteins function as ring E3 ligases and negatively regulate plant drought stress-responsive gene expression, Plant Cell, 2008, vol. 20, pp. 1693–1707.

    Article  PubMed  CAS  Google Scholar 

  5. Alexandersson, E., Danielson, J.A.H., Rade, J., Moparthi, V.K., Fontes, M., Kjellbom, P., and Johanson, U., Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress, Plant J., 2010, vol. 61, pp. 650–660.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida, T., Fujita, Y., Sayama, H., Kyonoshin, S., Maruyama, K., Mizoi, J., Shinozaki, K., and Shinozaki, K.Y., AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation, Plant J., 2010, vol. 61, pp. 672–685.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, Z.Y., Xiong, L.M., Li, W.B., Zhu, J.K., and Zhu, J.H., The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 1971–1984.

    Article  PubMed  CAS  Google Scholar 

  8. Yu, H., Chen, X., Hong, Y.Y., Wang, Y., Xu, P., Ke, S.D., Liu, H.Y., Zhu, J.K., Oliver, D.J., and Xiang, C.B., Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density, Plant Cell, 2008, vol. 20, pp. 1134–1151.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., and Lin, T.P., Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid, Plant Physiol., 2012, vol. 158, pp. 340–351.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, L., Yang, R.Z., Lu, Y.F., Cao, S.Q., Ci, L.K., and Zhang, J.J., β-Aminobutyric acid-mediated tobacco tolerance to potassium deficiency, Russ. J. Plant Physiol., 2012, vol. 59, pp. 781–787.

    Article  CAS  Google Scholar 

  11. Chen, A.K., Han, R.H., Li, D.Y., Ling, L.L., Luo, H.X., and Tang, S.J., The study on comparison of different relative conductance measurements for plant leaves, J. Guangdong Education Inst., 2010, vol. 30, pp. 88–91.

    Google Scholar 

  12. Smart, R.E. and Bingham, G.E., Rapid estimates of relative water content, Plant Physiol., 1974, vol. 53, pp. 258–260.

    Article  PubMed  CAS  Google Scholar 

  13. Yuan, J.S., Reed, A., Chen, F., and Stewart, C.N., Statistical analysis of real-time PCR data, BMC Bioinformatics, 2006, vol. 7, p. 85.

    Article  PubMed  Google Scholar 

  14. Zhao, J.S., Ren, W., Zhi, D.Y., Wang, L., and Xia, G.M., Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress, Plant Cell Rep., 2007, vol. 26, pp. 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  15. Kantar, M., Lucas, S.J., and Budak, H., miRNA expression patterns of Triticum dicoccoides in response to shock drought stress, Planta, 2011, vol. 233, pp. 471–484.

    Article  PubMed  CAS  Google Scholar 

  16. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K., Arabidopsis basic leucine zipper transcriptional transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11 632–11 637.

    Article  CAS  Google Scholar 

  17. Shinozaki, K. and Yamaguchi-Shinozaki, K., Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 217–223.

    PubMed  CAS  Google Scholar 

  18. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M., Regulatory network of gene expression in the drought and cold stress responses, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 410–417.

    Article  PubMed  CAS  Google Scholar 

  19. Zou, J.J., Wei, F.J., Wang, C., Wu, J.J., Ratnasekera, D., Liu, W.X., and Wu, W.H., Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress, Plant Physiol., 2010, vol. 154, pp. 1232–1243.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, S.J., Jung, H.J., Kang, H.S., and Kim, S.Y., Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses, Plant Cell Physiol., 2012, vol. 53, pp. 673–686.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jiang.

Additional information

This text is submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Chen, Z.P., Zhang, J.J. et al. Isolation and characterization of an arabidopsis drought-resistant mutant vrm1 . Russ J Plant Physiol 60, 830–838 (2013). https://doi.org/10.1134/S1021443713060046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713060046

Keywords

Navigation