Skip to main content
Log in

Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi

  • Brief Communications
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi have mutualistic symbiosis with higher plants, increasing plant resistance to environmental stresses and nutrient uptake and improving soil. During arbuscular mycorrhizal symbiosis, a range of chemical and biological factors are affected. In this study, two species of arbuscular mycorrhiza (Glomus mosseae and G. intraradices) were used to assess the effects of inoculation on licorice growth and secondary metabolite production. After successful inoculation, the increase in the growth rate, P and Zn uptake, and the accumulation of secondary metabolites in licorice (Glycyrrhiza glabra L.) roots were observed in two periods of 3 and 6 months compared to control. After 6 months, more increments in growth, secondary metabolites, and P and Zn uptake were observed compared with the first 3-months period. Two groups of secondary metabolites arising from phenolic and terpenoid metabolism obviously responded to mycorrhizal fungi colonization in licorice roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AM:

arbuscular mycorrhiza

References

  1. Hanrahan, C., Gale Encyclopedia of Alternative Medicine, Licorice, Farmington Hills: Thomson Gale, 2001.

    Google Scholar 

  2. Van Rossum, T.G. and Vulto, A.G., Intravenous glycyrrhizin for the treatment of chronic hepatitis C: a double blind, randomized, placebo-controlled phase I/II trial, J. Gastroenterol. Hepatol., 1999, vol. 14, pp. 1093–1099.

    Article  PubMed  Google Scholar 

  3. Koide, R.T. and Mosse, B., A history of research on arbuscular mycorrhiza, Mycorrhiza, 2004, vol. 14, pp. 145–163.

    Article  PubMed  Google Scholar 

  4. Smith, S.E., Smith, F.A., and Jakobsen, I., Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake, New Phytol., 2004, vol. 162, pp. 511–524.

    Article  Google Scholar 

  5. Scharff, A.M., Jakobsen, I., and Rosendahl, L., The effect of symbiotic microorganisms on phytoalexin contents of soybean roots, J. Plant Physiol., 1997, vol. 151, pp. 716–723.

    Article  CAS  Google Scholar 

  6. Benhamou, N., Elicitor-induced plant defense pathways, Trends Plant Sci., 1996, vol. 1, pp. 233–240.

    Google Scholar 

  7. Maier, W., Peipp, H., and Schmidt, J., Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas, Plant Physiol., 1995, vol. 109, pp. 465–470.

    Article  PubMed  CAS  Google Scholar 

  8. Khaosaad, T., Vierheilig, H., and Nell, M., Arbuscular mycorrhiza alter the concentration of essential oils in Oregano (Origanum sp., Lamiaceae), Mycorrhiza, 2006, vol. 16, pp. 443–446.

    Article  PubMed  CAS  Google Scholar 

  9. Papadopoulou, K. and Melton, R.E., Compromised disease resistance in saponin-deficient plants, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 12923–12928.

    Article  PubMed  CAS  Google Scholar 

  10. Shaw, L.J., Morris, P., and Hooker, J.E., Perception and modification of plant flavonoid signals by rhizosphere microorganisms, Environ. Microbiol., 2006, vol. 8, pp. 1867–1880.

    Article  PubMed  CAS  Google Scholar 

  11. Ponce, M.A., Scervino, J.M., Erra-Balsells, R., Ocampo, J.A., and Godeas, A.M., Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices, Phytochemistry, 2004, vol. 65, pp. 1925–1930.

    Article  PubMed  CAS  Google Scholar 

  12. Kapoor, R., Giri, B., and Mukerji, K.G., Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil, J. Sci. Food Agric., 2002, vol. 88, pp. 1–4.

    Google Scholar 

  13. Copetta, C., Lingua, G., and Berta, G., Effects of three am fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese, Mycorrhiza, 2006, vol. 16, pp. 485–494.

    Article  PubMed  CAS  Google Scholar 

  14. Phillips, J.M. and Hayman, D.S., Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection, Transact. British Mycol. Soc., 1970, vol. 55, pp. 158–161.

    Article  Google Scholar 

  15. Giovannetti, M. and Mosse, B., An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots, New Phytol., 1980, vol. 84, pp. 489–500.

    Article  Google Scholar 

  16. Allen, S.E., Chemical analysis of ecological materials, Oxford, London: Blackwell, 1989.

    Google Scholar 

  17. Hurst, W.J. and McKim, J.M., High-performance liquid chromatographic determination of glycyrrhizin in licorice products, J. Agric. Food Chem., 1983, vol. 31, pp. 387–389.

    Article  CAS  Google Scholar 

  18. Singleton, V.L. and Rossi, I.A., Colorimetry of total phenolics with phosphor-molybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic., 1995, vol. 16, pp. 144–158.

    Google Scholar 

  19. Gavito, M.E. and Miller, M.H., Changes in mycorrhiza development, dry matter partitioning and yield of maize, Plant Soil, 1998, vol. 199, pp. 177–186.

    Article  CAS  Google Scholar 

  20. Al-Karaki, G.N. and Al-Raddad, A., Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance, Mycorrhiza, 1997, vol. 7, pp. 83–88.

    Article  CAS  Google Scholar 

  21. Wright, D.P., Scholes, J.D., and Read, D.J., Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L., Plant Cell Environ., 1998, vol. 21, pp. 209–216.

    Article  Google Scholar 

  22. Porras-Soriano, A., Soriano-Martín, M.L., Porras-Piedra, A., and Azcon, R., Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions, J. Plant Physiol., 2009, vol. 166, pp. 1350–1359.

    Article  PubMed  CAS  Google Scholar 

  23. Colomb, B., Kinivy, R., and Debaeke, P.H., Effect of soil phosphor on leaf development and senescence dynamics of field-grown maize, Agron. J., 2000, vol. 25, pp. 428–443.

    Article  Google Scholar 

  24. Nemec, S. and Lund, E., Leaf volatiles of mycorrhizal and nonmycorrhizal Citrus jambhiri Lush, J. Essent. Oil Res., 1990, vol. 2, pp. 287–297.

    Article  CAS  Google Scholar 

  25. Moraes, R.M., Andrade, Z.D., and Bedir, E., Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.), Plant Sci., 2004, vol. 166, pp. 23–29.

    Article  CAS  Google Scholar 

  26. Lynn, D.G., Phenolic signals in cohabitation: implications for plant development, Annu. Rev. Plant Biol., 1990, vol. 41, pp. 497–526.

    Article  CAS  Google Scholar 

  27. Krishna, K.R., Phenols in mycorrhizal roots of Arachis hypogaea, Cell Mol. Life Sci., 1984, vol. 40, pp. 85–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Shabani.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orujei, Y., Shabani, L. & Sharifi-Tehrani, M. Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi. Russ J Plant Physiol 60, 855–860 (2013). https://doi.org/10.1134/S1021443713050129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713050129

Keywords

Navigation