Evaluating new isolates of microalgae from Kazakhstan for biodiesel production

Abstract

New microalgal strains that are native to South-East Kazakhstan were isolated and characterized with a view to identifying suitable candidates for biodiesel production. Six strains of chlorophyte algae (named K1–K6) were recovered from environmental samples as axenic cultures, and molecular analysis revealed that five (K1–K5) are strains of Parachlorella kessleri, whereas K6 is a strain of Chlorella vulgaris. A third isolate from Uzbekistan (termed UZ) was also identified as a separate strain of P. kessleri. All strains show high growth rates and an ability to utilize acetate as an exogenous source of fixed carbon. Furthermore, under conditions of nitrogen depletion, all three strains showed a significant accumulation of neutral lipids (triacylglycerides). P. kessleri K5 and C. vulgaris K6 therefore represent promising autochthon strains for large-scale cultivation and biodiesel production in Kazakhstan.

This is a preview of subscription content, access via your institution.

Abbreviations

ITS:

internal transcribed spacer

PCR:

polymerase chain reaction

TAGs:

triacylglycerides

TAP:

Trisacetate-phosphate

References

  1. 1.

    Field, C.B., Behrenfeld, M.J., Randerson, J.T., and Falkowski, P., Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 1998, vol. 281, pp. 237–240.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Chisti, Y., Biodiesel from microalgae, Biotechnol. Adv., 2007, vol. 25, pp. 294–306.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 2008, vol. 54, pp. 621–639.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Georgianna, D.R. and Mayfield, S.P., Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 2012, vol. 488, pp. 329–335.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Larkum, A.W., Ross, I.L., Kruse, O., and Hankamer, B., Selection, breeding and engineering of microalgae for bioenergy and biofuel production, Trends Biotechnol., 2012, vol. 30, pp. 198–205.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Malcata, F.X., Microalgae and biofuels: a promising partnership? Trends Biotechnol., 2011, vol. 29, pp. 542–549.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Tamiya, H., Morimura, M., Yorota, M., and Kunieda, R., Mode of nuclear division in synchronous cultures of Chlorella: comparison of various methods of synchronization, Plant Cell Physiol., 1961, vol. 2, pp. 383–403.

    Google Scholar 

  8. 8.

    Vasyurenko, Z.P. and Sinyak, K.M., Influence of culture medium of the fatty-acid profile in enteric bacteria, J. Hyg. Epidemiol. Microbiol. Immunol., 1979, vol. 23, pp. 397–406.

    PubMed  CAS  Google Scholar 

  9. 9.

    Berthold, D.A., Best, B.A., and Malkin, R., A rapid DNA preparation for PCR from Chlamydomonas reinhardtii and Arabidopsis thaliana, Plant Mol. Biol. Rep., 1993, vol. 11, pp. 338–344.

    Article  CAS  Google Scholar 

  10. 10.

    Hall J.D., Fucíková K., Lo, C., Lewis, L.A., and Karol, K.G., An assessment of proposed DNA barcodes in freshwater green algae, Cryptogamie, Algologie, 2010, vol. 31, pp. 529–555.

    Google Scholar 

  11. 11.

    Gorman, D.S. and Levine, R.P., Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 1965, vol. 54, pp. 1665–1669.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Cooksey, K.E., Guckert, J.B., Williams, S.A., and Callis, P.R., Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red, J. Microbiol. Methods, 1987, vol. 6, pp. 333–345.

    Article  CAS  Google Scholar 

  13. 13.

    Ratha, S.K., Babu, S., Renuka, N., Prasanna, R., Prasad, R.B., and Saxena, A.K., Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae, J. Basic Microbiol., 2012, doi 10.1002/jobm.201200001

    Google Scholar 

  14. 14.

    De la Hoz, Siegler, H., Ayidzoe, W., Ben-Zvi, A., Burrell, R.E., and McCaffrey, W.C., Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures, Algal Res., 2012, vol. 1, pp. 176–184.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Purton.

Additional information

This text is published in original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dyo, Y.M., Vonlanthen, S.E., Purton, S. et al. Evaluating new isolates of microalgae from Kazakhstan for biodiesel production. Russ J Plant Physiol 60, 549–554 (2013). https://doi.org/10.1134/S1021443713040031

Download citation

Keywords

  • Chlorella vulgaris
  • Parachlorella kessleri
  • biodiesel
  • lipids