Skip to main content
Log in

The effect of potato plant transformation with the gene encoding Δ12-acyl-lipid desaturase on the CO2 exchange and activities of antioxidant enzymes under hypothermia

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of potato (Solanum tuberosum L., cv. Desnitsa) plant transformation with the desA gene encoding Δ12-acyl-lipid desaturase from Synechocystis sp. PCC 6803 on the regulation of free-radical processes in relation to plant tolerance to hypothermia are considered. It was shown that the content of polyunsaturated fatty acids (PUFA) in transformed plants was higher than in wild-type ones. In particular, the content of linoleic acid in transformants was higher by 35% and the content of linolenic acid was by 41% higher than in untransformed plants. In addition, transformation induced an increase in the absolute content of C16-PUFA and on the whole resulted in a marked accumulation of membrane lipids. As judged from the values of the damage index and the ratio of photosynthesis to respiration in wild-type and transformed plants under cold treatment, these changes in lipid metabolism favored the protection of coupling membranes, thus preventing plants against free-radical oxidation under low-temperature stress. As a result, the intensity of oxidative stress in transformed plants was much lower than in wild-type ones, whereas antioxidant enzymes (superoxide dismutase, catalase, peroxidase) were not substantially activated under hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

ETC:

electron transport chain

FA:

fatty acids

UI:

unsaturation index

NBT:

nitro blue tetrazolium

POD:

peroxidase

POL:

peroxidation of lipids

PUFA:

polyunsaturated fatty acids

SOD:

superoxide dismutase

References

  1. Jabel, C.A., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H.J., Chang-Xing, Z., Hong-Bo, S., and Panneerselvam, R., Antioxidant Defense Responses: Physiological Plasticity in Higher Plants under Abiotic Constraints, Acta Physiol. Plant., 2009, vol. 31, pp. 427–436.

    Article  Google Scholar 

  2. Pradedova, E.V., Isheeva, O.D., and Salyaev, R.K., Classification of the Antioxidant Defense System as the Ground for Reasonable Organization of Experimental Studies of the Oxidative Stress in Plants, Russ. J. Plant Physiol., 2011, vol. 58, pp. 210–217.

    Article  CAS  Google Scholar 

  3. Kaniuga, Z., Chilling Response of Plants: Importance of Galactolipase, Free Fatty Acids, and Free Radicals, Plant Biol., 2008, vol. 10, pp. 171–184.

    Article  PubMed  CAS  Google Scholar 

  4. Lyons, J.M., Chilling Injury in Plants, Annu. Rev. Plant Physiol., 1973, vol. 24, pp. 445–466.

    Article  CAS  Google Scholar 

  5. Los, D.A., Molecular Mechanisms of Plant Chilling Tolerance, Vestn. Ross. Akad. Nauk, 2005, vol. 75, pp. 338–345.

    Google Scholar 

  6. Demin, I.N., Naraikina, N.V., Tsydendanbaev, V.D., Moshkov, I.E., and Trunova, T.I., Integration of the Cyanobacterial desA Gene for Δ12-Acyl-Lipid Desaturase Improves Potato Tolerance to Paraquat-Induced Oxidative Stress, Russ. J. Plant Physiol., 2011, vol. 58, pp. 660–666.

    Article  CAS  Google Scholar 

  7. Maali, Amiri, R., Goldenkova-Pavlova, I.V., Yur’eva, N.A., Pchelkin, V.P., Tsydendambaev, V.D., Vereshchagin, A.G., Deryabin, A.N., Trunova, T.I., Los’, D.A., and Nosov, A.M., Lipid Fatty Acid Composition of Potato Plants Transformed with the Δ12-Desaturase Gene from Cyanobacterium, Russ. J. Plant Physiol., 2007, vol. 54, pp. 600–606.

    Article  Google Scholar 

  8. Demin, I.N., Shimshilashvili, C.R., Yur’eva, N.O., Naraykina, N.V., Goldenkova-Pavlova, I.V., Los, D.A., Nosov, A.M., and Trunova, T.I., Overexpression of the Acyl-Lipid Δ12-Desaturase Gene Protects Potato Plants from Low Temperature Damage, Acta Agron., 2011, vol. 59, pp. 87–99.

    Article  CAS  Google Scholar 

  9. Demin, I.N., Deryabin, A.N., Sin’kevich, M.S., and Trunova, T.I., Insertion of Cyanobacterial desA Gene Coding for Δ12-Acyl-Lipid Desaturase Increases Potato Plant Resistance to Oxidative Stress Induced by Hypothermia, Russ. J. Plant Physiol., 2008, vol. 55, pp. 639–648.

    Article  CAS  Google Scholar 

  10. Sidorov, R.A., Zhukov, A.V., Vereshchagin, A.G., and Tsydendambaev, V.D., Occurrence of Fatty Acid Lower-Alkyl Esters in Euonymus Fruits, Russ. J. Plant Physiol., 2012, vol. 59, pp. 326–332.

    Article  CAS  Google Scholar 

  11. Klimov, S.V., Popov, V.N., and Trunova, T.I., The Relationship between the Cold Tolerance of Tomato and Cucumber Organs and Photosynthesis, Russ. J. Plant Physiol., 2000, vol. 47, pp. 435–440.

    CAS  Google Scholar 

  12. Kumar, G.N. and Knowles, N.R., Changes in Lipid Peroxidation and Lipolytic and Free-Radical Scavenging Enzyme during Aging and Sprouting of Potato (Solanum tuberosum L.) Seed-Tubers, Plant Physiol., 1993, vol. 102, pp. 115–124.

    PubMed  CAS  Google Scholar 

  13. Popov, V.N., Kipaikina, N.V., Merkulova, N.V., Orlova, I.V., Serebriiskaya, T.S., Los, D.A., Trunova, T.I., and Tsydendambaev, V.D., The Involvement of Acyl-Lipid Δ9-Desaturase in the Development of Sensitive Plant Chilling Tolerance, Dokl. Biol. Sci., 2006, vol. 407, pp. 149–152.

    Article  PubMed  CAS  Google Scholar 

  14. De Palma, M., Grillo, S., Massarelli, I., Costa, A., Balogh, G., Vigh, L., and Leone, A., Regulation of Desaturase Gene Expression, Changes in Membrane Lipid Composition and Freezing Tolerance in Potato Plants, Mol. Breed., 2008, vol. 21, pp. 15–26.

    Article  Google Scholar 

  15. Mongrand, S., Bessoule, J.-J., Cabantous, F., and Cassagne, C., The C-16:3/C-18:3 Fatty Acid Balance in Photosynthetic Tissues from 468 Plant Species, Phytochemistry, 1998, vol. 49, pp. 1049–1064.

    Article  CAS  Google Scholar 

  16. Murata, N., Molecular Species Composition of Phosphatidylglycerols from Chilling-Sensitive and Chilling-Resistant Plants, Plant Cell Physiol., 1983, vol. 24, pp. 81–86.

    CAS  Google Scholar 

  17. Schmid, K.M. and Ohlrogge, J.B., Lipid Metabolism in Plants, Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E. and Vance, J.E, Eds., Amsterdam: Elsevier, 2007, pp. 97–129.

    Google Scholar 

  18. Astakhova, N.V., Demin, I.N., Naraikina, N.V., and Trunova, T.I., Effect of the desA Gene Encoding Δ12-Acyl-Lipid Desaturase on the Chloroplast Structure and Tolerance to Hypothermia of Potato Plants, Russ. J. Plant Physiol., 2011, vol. 58, pp. 18–23.

    Article  CAS  Google Scholar 

  19. Allakhverdiev, S.I., Los, D.A., and Murata, N., Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids, Lipids in Photosynthesis: Essential and Regulatory Functions, Wada, H. and Murata, N., Eds., New York: Springer-Verlag, 2009, pp. 373–388.

    Chapter  Google Scholar 

  20. Prasad, T.K., Mechanisms of Chilling-Induced Oxidative Stress Injury and Tolerance in Developing Maize Seedlings: Changes in Antioxidant System, Oxidation of Proteins and Lipids, and Protease Activities, Plant J., 1996, vol. 10, pp. 1017–1026.

    Article  CAS  Google Scholar 

  21. Trach, V.V. and Storozhenko, V.A., Superoxide Dismutase as the Component of Plant Antioxidant System under Abiotic Stresses, Fiziol. Biokh. Kul’t. Rast., 2007, vol. 39, pp. 291–302.

    Google Scholar 

  22. Sin’kevich, M.S., Naraikina, N.V., and Trunova, T.I., Processes Hindering Activation of Lipid Peroxidation in Cold-Tolerant Plants under Hypothermia, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1020–1027.

    Article  Google Scholar 

  23. Chen, Y. and Patterson, B.D., The Effect of Chilling Temperature on the Level of Superoxide Dismutase, Catalase and Hydrogen in Some Plant Leaves, Acta Phytophysiol., 1998, vol. 14, pp. 323–328.

    Google Scholar 

  24. Scandalios, J.G., Oxygen Stress and Superoxide Dismutases, Plant Physiol., 1993, vol. 101, pp. 7–12.

    PubMed  CAS  Google Scholar 

  25. Choi, S.M., Jeong, S.W., Jeong, W.J., Kwon, S.Y., Chow, W.S., and Park, Y., Chloroplast Cu/Zn-Superoxide Dismutase Is a Highly Sensitive Site in Cucumber Leaves Chilled in the Light, Planta, 2002, vol. 216, pp. 315–324.

    Article  PubMed  CAS  Google Scholar 

  26. Alscher, R.G., Donahue, J.L., and Cramer, C.L., Reactive Oxygen Species and Antioxidants: Relationships in Green Cells, Physiol. Plant., 1997, vol. 100, pp. 224–233.

    Article  CAS  Google Scholar 

  27. Maksimov, I.V., Cherepanova, E.A., Burkhanova, G.F., Sorokan’, A.V., and Kuz’mina, O.I., Structural-Functional Features of Plant Isoperoxidases, Biochemistry (Moscow), 2011, vol. 76, pp. 609–621.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Trunova.

Additional information

Original Russian Text © I.N. Demin, N.V. Naraikina, V.D. Tsydendambaev, I.E. Moshkov, T.I. Trunova, 2013, published in Fiziologiya Rastenii, 2013, Vol. 60, No. 3, pp. 377–385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demin, I.N., Naraikina, N.V., Tsydendambaev, V.D. et al. The effect of potato plant transformation with the gene encoding Δ12-acyl-lipid desaturase on the CO2 exchange and activities of antioxidant enzymes under hypothermia. Russ J Plant Physiol 60, 367–374 (2013). https://doi.org/10.1134/S1021443713020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713020040

Keywords

Navigation