Russian Journal of Plant Physiology

, Volume 60, Issue 2, pp 200–211 | Cite as

Effects of abscisic acid on the contents of polyamines and proline in common bean plants under salt stress

  • N. I. Shevyakova
  • L. I. Musatenko
  • L. A. StetsenkoEmail author
  • N. P. Vedenicheva
  • L. P. Voitenko
  • K. M. Sytnik
  • Vl. V. Kuznetsov
Research Papers


The effects of ABA treatment on the contents of polyamines (PAs) and proline (Pro) in the glycophyte Phaseolus vulgaris L. during plant adaptation to salt stress were studied. Two-week-old common bean seedlings grown in the phytotron chamber on the Jonson nutrient medium were subjected to salinity for 6 days by one-time NaCl addition to medium up to final concentrations of 50 and 100 mM. During first three days of salinity, the root system was daily treated with ABA (1, 5, 10, or 50 μM) for 30 min. Salt stress (100 mM NaCl) elevated the level of endogenous ABA, increased the content of Pro 14-fold, reduced sharply the content of free PAs (putrescine, spermidine, spermine, and cadaverine), and the accumulation of 1,3-diaminopropan, a product of oxidation of high-molecular PAs. Common bean plant treatment with 1 μM ABA weakened the adverse effects of salt stress (100 mM NaCl), which was manifested in the maintenance of plant growth, stimulation of chlorophyll (a and b) and carotenoid accumulation, a stabilization of water and Na+ balance. Seedling treatment with ABA suppressed NaCl-induced Pro and intracellular ABA accumulation and restored the levels of putrescine and spermidine. The content of spermine in the leaves of plants subjected to salt stress and treated with ABA was approximately threefold higher than in control plants, whereas the content of cadaverine increased under similar conditions more than fivefold. Simultaneously, the contents of 1,3-diaminopropan and malondialdehyde as well as activity of superoxide dismutase were reduced, which indicates a weakening of oxidative stress, one of the possible causes of defensive ABA effects against salt stress. In addition, the suppression by exogenous ABA of Pro accumulation and stimulation of PA content under salt stress confirm indirectly our hypothesis that ABA is involved in the coordinated regulation of two biosynthetic pathways, Pro and PA formation, which use a common precursor, glutamate, and play an important protective role during stress in plants.


Phaseolus vulgaris salt stress ABA polyamines proline 





















Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines and Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.CrossRefGoogle Scholar
  2. 2.
    Kuznetsov, Vl.V. and Shevyakova, N.I., Proline under Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 1999, vol. 46, pp. 274–288.Google Scholar
  3. 3.
    Rushton, D.L., Tripathi, P., Rabara, R.C., Ringler, P., Boken, A.K., Langum, T.J., Smidt, L., Boomsma, D.D., Emme, N.J., Chen, X., Finer, J.J., Shen, Q.J., and Rushton, P.J., WRKY Transcription Factors: Key Components in Abscisic Acid Signaling, Plant Biotechnol. J., 2011, doi 101111/j.1467-7652.2011.00634.Google Scholar
  4. 4.
    Shevyakova, N.I., Musatenko, L.I., Stetsenko, L.A., Rakitin, V.Yu., Vedenicheva, N.P., Voitenko, L.V., and Kuznetsov, Vl.V., Effects of Salinity on Growth and Phytohormones and Polyamines Contents in Phaseolus vulgaris L. Plants, Fiziol. Biokhim. Kul’t. Rast., 2010, vol. 42, pp. 483–490.Google Scholar
  5. 5.
    Vedenicheva, N.P., Voitenko, L.V., Musatenko, L.I., Stetsenko, L.A., and Shevyakova, N.I., Effects of Salinity on Phytohormones Contents in Mesembryanthemum crystallinum L. Leaves, Vestn. Khar’k. Nats. Univ. im. V.N. Karazina, Ser. Biol., 2010, no. 3, pp. 30–36.Google Scholar
  6. 6.
    Hanzawa, Y., Imai, A., Michael, A.J., Komeda, Y., and Takahashi, T., Characterization of the Spermidine Synthase-Related Gene Family in Arabidopsis thaliana, FEBS Lett., 2002, vol. 527, pp. 176–180.PubMedCrossRefGoogle Scholar
  7. 7.
    Urano, K., Yoshiba, Y., Nanjo, T., Igarashi, Y., Seki, M., Sekiguchi, F., Yamaguchi-Shinozaki, K., and Shinozaki, K., Characterization of Arabidopsis Genes Involved in Biosynthesis of Polyamines in Abiotic Stress Responses and Developmental Stages, Plant Cell Environ., 2003, vol. 26, pp. 1917–1926.CrossRefGoogle Scholar
  8. 8.
    Alcazar, R., Cuevas, J.C., Patron, M., Altabella, T., and Tiburcio, A.F., Abscisic Acid Modulates Polyamine Metabolism under Water Stress in Arabidopsis thaliana, Physiol. Plant., 2006, vol. 128, pp. 448–455.CrossRefGoogle Scholar
  9. 9.
    Strizhov, N., Abraham, E., Okresz, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C., and Szabados, L., Differential Expression of Two P5CS Genes Controlling Proline Accumulation during Salt-Stress Requires ABA and Is Regulated by ABA1, ABI1 and AXR2 in Arabidopsis, Plant J., 1997, vol. 12, pp. 557–569.PubMedCrossRefGoogle Scholar
  10. 10.
    Hare, P.D., Cress, W.A., and Staden, J., Proline Synthesis and Degradation: A Model System for Elucidating Stress-Related Signal Transduction, J. Exp. Bot., 1999, vol. 50, pp. 413–434.Google Scholar
  11. 11.
    Winter, K. and Holtum, J.A.M., Environment or Development? Lifetime Net CO2 Exchange and Control of the Expression of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum, Plant Physiol., 2007, vol. 143, pp. 98–107.PubMedCrossRefGoogle Scholar
  12. 12.
    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid Determination of Free Proline for Water-Stress Studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  13. 13.
    Flores, H.E. and Galston, A.W., Analysis of Polyamines in Higher Plants by High Performance Liquid Chromatography, Plant Physiol., 1982, vol. 69, pp. 701–706.PubMedCrossRefGoogle Scholar
  14. 14.
    Shlyk, A.A., Determination of Chlorophyll and Carotenoid Contents in Green Leaf Extracts, Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinova, O.A., Ed., Moscow: Nauka, 1971, pp. 154–170.Google Scholar
  15. 15.
    Musatenko, L.I., Vedenicheva, N.P., Vasyuk, V.A., Generalova, V.N., Martyn, G.I., and Sytnik, K.M., Phytohormones in Seedlings of Maize Hybrids Differing in Their Tolerance to High Temperatures, Russ. J. Plant Physiol., 2003, vol. 50, pp. 444–448.CrossRefGoogle Scholar
  16. 16.
    Khadri, M., Tejera, N.A., and Lluch, C., Alleviation of Salt Stress in Common Bean (Phaseolus vulgaris) by Exogenous Abscisic Acid Supply, J. Plant Growth Regul., 2006, vol. 25, pp. 110–119.CrossRefGoogle Scholar
  17. 17.
    Khadri, M., Tejera, N.A., and Lluch, C., Sodium Chloride-ABA Interaction in Two Common Bean (Phaseolus vulgaris) Cultivars Differing in Salinity Tolerance, Environ. Exp. Bot., 2007, vol. 60, pp. 211–218.CrossRefGoogle Scholar
  18. 18.
    Li, X.-J., Yang, M.-F., Chen, H., Qu, L.-Q., Chen, F., and Shen, S.-H., Abscisic Acid Pretreatment Enhances Salt Tolerance of Rice Seedlings: Proteomic Evidence, Biochim. Biophys. Acta, 2010, vol. 1804, pp. 929–940.PubMedCrossRefGoogle Scholar
  19. 19.
    Kuznetsov, Vl.V., Shorina, M.V., Aronova, E.E., Stetsenko, L.A., Rakitin, V.Yu., and Shevyakova, N.I., NaCl- and Ethylene-Dependent Cadaverine Accumulation and Its Possible Protective Role in the Adaptation of the Common Ice Plant to Salt Stress, Plant Sci., 2007, vol. 172, pp. 363–370.CrossRefGoogle Scholar
  20. 20.
    Cacorro, P., Martinez, R., Ortiz, A., and Cerda, A., Abscisic Acid and Osmotic Relations in Phaseolus vulgaris L. Shoot under Salt Stress, Plant Growth Regul., 1995, vol. 14, pp. 99–104.CrossRefGoogle Scholar
  21. 21.
    Foyer, C.H. and Noctor, G., Oxidant and Antioxidant Signaling in Plants: A Re-Evaluation of the Concept of Oxidative Stress in a Physiological Context, Plant Cell Environ., 2005, vol. 28, pp. 1056–1071.CrossRefGoogle Scholar
  22. 22.
    Radyukina, N.L., Ivanov, Yu.V., Kartashov, A.V., Pashkovskiy, P.P., Shevyakova, N.I., and Kuznetsov, Vl.V., Regulation of Gene Expression Governing Proline Metabolism in Thellungiella salsuginea by NaCl and Paraquat, Russ. J. Plant Physiol., 2011, vol. 58, pp. 643–652.CrossRefGoogle Scholar
  23. 23.
    Radyukina, N.L., Shashukova, A.V., Shevyakova, N.I., and Kuznetsov, Vl.V., Effects of Various Iron Supply on Oxidative Stress Development and Ferritin Formation in the Common Ice Plants, Russ. J. Plant Physiol., 2008, vol. 55, pp. 649–656.CrossRefGoogle Scholar
  24. 24.
    Merlot, S. and Giraud, J., Genetic Analysis of Abscisic Acid Signal Transduction, Plant Physiol., 1997, vol. 114, pp. 751–757.PubMedCrossRefGoogle Scholar
  25. 25.
    Kholodova, V.P., Meshcheryakov, A.B., Rakitin, V.Yu., Karyagin, V.V., and Kuznetsov, Vl.V., Hydraulic Signal as the “Primary Messenger of Water Deficit” in Plants under Salt Stress, Dokl. Akad. Nauk, 2006, vol. 407, pp. 282–285.Google Scholar
  26. 26.
    Cabot, C., Sibole, J.V., Barcelo, J., and Poschenrieder, C., Abscisic Acid Decreases Leaf Na+ Exclusion in Salt-Treated Phaseolus vulgaris L., J. Plant Growth Regul., 2009, vol. 28, pp. 187–192.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. I. Shevyakova
    • 1
  • L. I. Musatenko
    • 2
  • L. A. Stetsenko
    • 1
    Email author
  • N. P. Vedenicheva
    • 2
  • L. P. Voitenko
    • 2
  • K. M. Sytnik
    • 2
  • Vl. V. Kuznetsov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Cholodny Institute of BotanyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations