Russian Journal of Plant Physiology

, Volume 60, Issue 1, pp 27–32 | Cite as

Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and evolutionary models

  • N. A. Provorov


Efficiency of symbiotic nitrogen fixation in legumes depends on bringing together the processes of N2 fixation, assimilation of its products, supply of nitrogenase with energy, and development of nodule tissue and cellular structures. Coordination of these processes could arise from the evolutionary old functions of the nodules associated with deposition of the products of photosynthesis governed by systemic signals traveling between the above-ground organs and the roots. Further increase in symbiotic efficiency was associated with a pronounced ability to fix N2 by intracellular bacteroids that lost capability to propagate (as observed in galegoid legumes from the tribes Viciae, Trifolieae, and Galegae producing indeterminate nodules). However, efficiency of these symbioses is restricted by a slow removal from the nodules of the products of N2 fixation, which are assimilated along the same amide pathway as nitrogen compounds arriving from the soil. In legumes from the tribe Phaseoleae, such a restriction was overcome owing to a particular way of nitrogen assimilation via its incorporation into ureides (in determinate nodules). Development of symbioses where specialization of bacteroids in symbiotic fixation of atmospheric nitrogen is combined with its ureide assimilation will make it possible to produce new forms of plants highly efficient in symbiotic nitrogen fixation.


legumes nodule bacteria (rhizobia) symbiotrophic autotrophic, and mixotrophic nitrogen assimilation systemic regulation of nodule development evolution of nitrogen fixing systems genetic engineering of plant-microbial symbioses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kretovich, V.L., Biokhimiya usvoeniya azota vozdukha rasteniyami (Biochemistry of Air Nitrogen Consumption by Plants), Moscow: Nauka, 1994.Google Scholar
  2. 2.
    Beveridge, C.A., Mathesius, U., Rose, R.J., and Gresshoff, P., Common Regulatory Themes in Meristem Development and Whole-Plant Homeostasis, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 44–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Romanov, V.I., Chetkova, S.A., Tikhonovich, I.A., Alisova, S.M., and Kretovich, V.L., Nitrogen Fixation by Pea Chlorophyll Mutants, Dokl. Akad. Nauk SSSR, 1987, vol. 294, pp. 1277–1280.Google Scholar
  4. 4.
    Provorov, N.A., Relationship between Symbiotic and Combined Nitrogen Assimilation in Leguminous Plants: Genetic and Breeding Aspects, Russ. J. Plant Physiol., 1996, vol. 43, pp. 111–118.Google Scholar
  5. 5.
    Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Plant-Microorganism Symbiosis: Molecular Genetics of Coming Agrosystems), St. Petersburg: St. Petersburg Gos. Univ., 2009.Google Scholar
  6. 6.
    Parniske, M., Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbiosis, Nat. Rev. Microbiol., 2008, vol. 6, pp. 763–775.PubMedCrossRefGoogle Scholar
  7. 7.
    Swensen, S.M., The Evolution of Actinorhizal Symbioses: Evidence for Multiple Origins of Symbiotic Associations, Am. J. Bot., 1996, vol. 83, pp. 1503–1512.CrossRefGoogle Scholar
  8. 8.
    Caetano-Anolles, G., Joshi, P., and Gresshoff, P.M., Nodulation in the Absence of Rhizobium, Plant Biotechnology Development, Gresshoff, P.M., Ed., Boca Raton: CRC, 1992, pp. 61–70.Google Scholar
  9. 9.
    Keller, M., Roxlau, A., Weng, W.M., Schmidt, M., Quandt, J., Niehaus, K., Jording, D., Arnold, W., and Pühler, A., Molecular Analysis of the Rhizobium meliloti mucR Gene Regulating the Biosynthesis of the Exopolysaccharides Succinoglycan and Galactoglucan, Mol. Plant-Microbe Interact., 1995, vol. 8, pp. 267–277.PubMedCrossRefGoogle Scholar
  10. 10.
    Desbrosses, G.J. and Stougaard, J., Root Nodulation: For How Plant-Microbe Symbiosis Influences Host Developmental Pathways, Cell Host Microbe, 2011, vol. 10, pp. 348–358.PubMedCrossRefGoogle Scholar
  11. 11.
    Saikia, S.P., Jain, V., Khetarpal, S., and Aravind, S., Dinitrogen Fixation Activity of Azospirillum brasilense in Maize (Zea mays), Curr. Sci., 2007, vol. 93, pp. 1296–1300.Google Scholar
  12. 12.
    Kaneko, T., Minamisawa, K., Isawa, T., Nakatsukasa, H., Mitsui, H., Kawaharada, Y., Nakamura, Y., Watanabe, A., Kawashima, K., Ono, A., Shimizu, Y., Takahashi, C., Minami, C., Fujishiro, T., Kohara, M., Katoh, M., Nakazaki, N., Nakayama, S., Yamada, M., Tabata, S., and Sato, S., Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510, DNA Res., 2010, vol. 17, pp. 37–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Onishchuk, O.P., Vorob’ev, N.I., Provorov, N.A., and Simarov, B.V., Rhizobium Symbiotic Activity in Sinorhizobium meliloti, Ekol. Genetika, 2009, vol. 7, pp. 3–10.Google Scholar
  14. 14.
    Provorov, N.A. and Vorobyov, N.I., Evolutionary Genetics of Plant-Microbe Symbioses, New York: Nova Sci., 2010.Google Scholar
  15. 15.
    Zhang, Y.P., Grunwald, S.K., Lies, D., Halbleib, C., Ma, Y., Roberts, G.P., Burris, R.H., and Ludden, P.W., Posttranslational Regulation of Nitrogenase Activity by Reversible ADP-Ribosylation; How Are the Regulatory Enzymes DraT and DraG Regulated? Nitrogen Fixations: Fundamentals and Applications, Tikhonovich, I.A., Provorov, N.A., Romanov, V.I., Newton, W.E., Eds., Dordrecht: Kluwer, 1995, pp. 177–182.CrossRefGoogle Scholar
  16. 16.
    Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.C., Jaubert, M., Simon, D., Cartieaux, F., Prin, Y., Bena, G., Hannibal, L., Fardoux, J., Kojadinovic, M., Vuillet, L., Lajus, A., Cruveiller, S., Rouy, Z., Mangenot, S., Segurens, B., Dossat, C., Franck, W.L., Chang, W.S., Saunders, E., Bruce, D., Richardson, P., Normand, P., Dreyfus, B., Pignol, D., Stacey, G., Emerich, D., Verméglio, A., Médigue, C., and Sadowsky, M., Legume Symbioses: Absence of Nod Genes in Photosynthetic Bradyrhizobia, Science, 2007, vol. 316, pp. 1307–1312.PubMedCrossRefGoogle Scholar
  17. 17.
    Parsons, R., Nodule Function and Regulation in Gunnera-Nostoc Symbioses, Proc. Irish Royal Acad. Sci., 2002, vol. 102B, pp. 41–43.CrossRefGoogle Scholar
  18. 18.
    Udvardi, M. and Kahn, M., Evolution of (Brady) Rhizobium-Legume Symbiosis: Why Do Bacteroids Fix Nitrogen? Symbiosis, 1992, vol. 14, pp. 87–101.Google Scholar
  19. 19.
    Kaminski, P., Batut, Zh., and Boistard, P., Control of Symbiotic Nitrogen Fixation by Rhizobium, Rhizobiaceae. Molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae. Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 465–492.Google Scholar
  20. 20.
    Alunni, B., Kevei, Z., Redonto-Nieto, M., Kondorosi, A., Mergaert, P., and Kondorosi, E., Genomic Organization and Evolutionary Insights on GRP and NCP Genes, Two Large Nodule-Specific Gene Families in Medicago truncatula, Mol. Plant-Microbe Interact., 2007, vol. 20, pp. 1138–1148.PubMedCrossRefGoogle Scholar
  21. 21.
    Velde van de, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaître, B., Alunni, B., Bourge, M., Kucho, K., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., and Mergaert, P., Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis, Science, 2010, vol. 327, pp. 1122–1126.PubMedCrossRefGoogle Scholar
  22. 22.
    Provorov, N.A., Saimnazarov, U.B., Bahromov, I.U., Pulatova, D.Z., Kozhemyakov, A.P., and Kurbanov, G.A., Effect of Rhizobia Inoculation on the Seed (Herbage) Production of Mungbean (Phaseolus aureus Roxb.) Grown at Uzbekistan, J. Arid Environ., 1998, vol. 39, pp. 569–575.CrossRefGoogle Scholar
  23. 23.
    Yurgel, S. and Kahn, M., A Mutant GlnD Nitrogen Sensor Protein Leads to a Nitrogen-Fixing but Ineffective Sinorhizobium meliloti Symbiosis with Alfalfa, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 18 958–18 963.CrossRefGoogle Scholar
  24. 24.
    Rengel, Z., Breeding for Better Symbiosis, Plant Soil, 2002, vol. 245, pp. 147–162.CrossRefGoogle Scholar
  25. 25.
    Kurchak, O.N. and Provorov, N.A., Responses of Hairy Vetch (Vicia villosa Roth) and Common Vetch (Vicia sativa L.) to Inoculation with Rhizobia and to Application of Carbamide, Russ. J. Plant Physiol., 1995, vol. 42, pp. 428–434.Google Scholar
  26. 26.
    Kurchak, O.N., Galan, M.S., Orlova, O.V., Provorov, N.A., and Simarov, B.V., A Potential for Symbiotic Nitrogen Fixation in Hairy Vetch (Vicia villosa Roth) as Compared with Common Vetch (Vicia sativa L.), New Approaches and Techniques in Breeding Sustainable Fodder Crops and Amenity Grasses, Provorov, N.A., Tikhonovich, I.A., and Veronesi, F., Eds., St.-Petersburg: Vavilov All-Russia Research Institute of Plant Industry, 2000, pp. 151–155.Google Scholar
  27. 27.
    Provorov, N.A. and Tikhonovich, I.A., Ecological and Genetic Principles for Plant Breeding to Increase Efficiency of Their Interaction with Microorganisms, S.-kh. Biol., 2003, no. 3, pp. 11–25.Google Scholar
  28. 28.
    Kravchenko, L.V., Shaposhnikov, A.I., Makarova, N.M., Azarova, T.S., L’vova, K.A., Kostyuk, I.I., Lyapunova, O.A., and Tikhonovich, I.A., Exometabolites of Bread Wheat and Tomato Affecting the Plant-Microbe Interactions in the Rhizosphere, Russ. J. Plant Physiol., 2011, vol. 58, pp. 781–786.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.All-Russian Research Institute of Agricultural MicrobiologyRussian Academy of Agricultural SciencesSt. PetersburgRussia

Personalised recommendations