Abstract
In the roots of bread wheat (Triticum aestivum L.) seedlings, the effects of pretreatment with 28 nM wheat germ agglutinin (WGA) and successive action of 1 mM cadmium acetate on growth, phytohormone balance, lignin deposition, and also cadmium accumulation and distribution were studied. Priority data on cadmium-induced ABA-mediated reversible accumulation of WGA in the roots, which was accompanied by its excretion in the medium of seedling incubation, were obtained. Pretreatment with WGA exerted a clear protective effect on seedling growth in the presence of cadmium, which was based on a decrease in the amplitude of stress-induced shifts in the balance between IAA and ABA and preventing the reduction in the cytokinin level. Acceleration of lignification of the cell walls in the basal parts of roots of seedlings pretreated with WGA and subjected to stress is shown, and this limits cadmium entry into the plant.
This is a preview of subscription content, access via your institution.
Abbreviations
- HM:
-
heavy metals
- MI:
-
mitotic index
- POL:
-
peroxidation of lipids
- WGA:
-
wheat germ agglutinin
References
Shakirova, F.M., Avalbaev, A.M., Bezrukova, M.V., and Kudoyarova, G.R., Role of Endogenous Hormonal System in the Realization of the Antistress Action of Plant Growth Regulators on Plants, Plant Stress, 2010, vol. 4, pp. 32–38.
Rock, C.D., Sakata, Y., and Quatrano, R.S., Stress Signaling: The Role of Abscisic Acid (ABA), Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation, Pareek, A., Sopory, S.K., Bohnert, H.J., and Govindjee, Eds., Springer Science + Business Media, 2010, part 1, pp. 33–73.
Raikhel, N.V., Palevitz, B.A., and Haigler, C.H., Abscisic Acid Control of Lectin Accumulation in Wheat Seedlings and Callus Cultures, Plant Physiol., 1986, vol. 80, pp. 167–171.
Shakirova, F.M., Bezrukova, M.V., Aval’baev, A.M., and Fatkhutdinova, R.A., Control Mechanisms of Lectin Accumulation in Wheat Seedlings under Salinity, Russ. J. Plant Physiol., 2003, vol. 50, pp. 301–304.
Kildibekova, A.R., Bezrukova, M.V., Avalbaev, A.M., Fatkhutdinova, R.A., and Shakirova, F.M., Mechanism of Protection of Root Cell Protection by Wheat Germ Agglutinin in Wheat Seedling Roots under Salinity, Tsitologiya, 2004, vol. 46, pp. 312–315.
Shakirova, F.M. and Bezrukova, M.V., Current Knowledge of Presumable Functions of Plant Lectins, Zh. Obshch. Biol., 2007, vol. 68, pp. 109–125.
Seregin, I.V. and Ivanov, V.B. Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants, Russ. J. Plant Physiol., 2001, vol. 48, pp. 523–544.
Polle, A. and Schutzendubel, A., Heavy Metal Signalling in Plants: Linking Cellular and Organismic Responses, Plant Stress Responses, Hirt, H. and Shinozaki, K., Eds., Berlin: Springer-Verlag, 2003, pp. 1–29.
Fusco, N., Micheletto, L., Dal Corso, G., Borgato, L., and Furini, A., Identification of Cadmium-Regulated Genes by cDNA-AFLP in the Heavy Metal Accumulator Brassica juncea L., J. Exp. Bot., 2005, vol. 56, pp. 3017–3027.
Tamas, L., Mistrik, I., Huttova, J., Haluskova, L., Valentovicova, K., and Zelinova, V., Role of Reactive Oxygen Species-Generating Enzymes and Hydrogen Peroxide during Cadmium, Mercury and Osmotic Stresses in Barley Root Tip, Planta, 2010, vol. 231, pp. 221–231.
Hsu, Y.T. and Kao, C.H., Abscisic Acid Accumulation and Cadmium Tolerance in Rice Seedlings, Physiol. Plant., 2005, vol. 124, pp. 71–80.
Weber, M., Trampczynska, A., and Clemens, S., Comparative Transcriptome Analysis of Toxic Metal Responses in Arabidopsis thaliana and the Cd2+-Hypertolerant Facultative Metallophyte Arabidopsis halleri, Plant Cell Environ., 2006, vol. 29, pp. 950–963.
Van de Mortel, J.E., Schat, H., Moerland, P.D., van Themaat, E.L., van der Ent, S., Blankestijn, H., Ghandilyan, A., Tsiatsiani, S., and Aarts, M.G.M., Expression Differences for Genes Involved in Lignin, Glutathione and Sulphate Metabolism in Response to Cadmium in Arabidopsis thaliana and the Related Zn/Cd-Hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 2008, vol. 31, pp. 301–324.
Bezverkhova, N.V., Safronova, V.I., Antonyuk, L.P., and Belimov, A.A., Involvement of the Bacterium Azospirillum brasilense in Wheat Tolerance to Cadmium, Metal Ions Biol. Med., 2002, vol. 7, pp. 268–271.
Shakirova, F.M., Allagulova, Ch.R., Bezrukova, M.V., Aval’baev, A.M., and Gimalov, F.R., The Role of Endogenous ABA in Cold-Induced Expression of the TADHN Dehydrin Gene in Wheat Seedlings, Russ. J. Plant Physiol., 2009, vol. 56, pp. 720–723.
Shakirova, F.M. and Bezrukova, M.V., Effect of 24-Epibrassinolide and Salinity on the Levels of ABA and Lectin, Russ. J. Plant Physiol., 1998, vol. 45, pp. 388–391.
Shakirova, F.M., Kildibekova, A.R., Bezrukova, M.V., and Avalbaev, A.M., Wheat Germ Agglutinin Regulates Cell Division in Wheat Seedlings Roots, Plant Growth Regul., 2004, vol. 42, pp. 175–180.
Fusconi, A., Repetto, O., Bona, E., Massa, N., Gallo, C., Dumas-Gaudot, E., and Berta, G., Effect of Cadmium on Meristem Activity and Nucleus Ploide in Roots of Pisum sativum L. cv. Frisson Seedlings, Environ. Exp. Bot., 2006, vol. 58, pp. 253–260.
Furst, G.G., Metody anatomo-gistokhimicheskogo issledovaniya rastenii (Methods for Anatomic and Histological Investigation of Plants), Moscow: Nauka, 1979.
Seregin, I.V. and Ivanov, V.B., Is the Endodermal Barrier the Only Factor Preventing the Inhibition of Root Branching by Heavy Metal Salts? Russ. J. Plant Physiol., 1997, vol. 44, pp. 797–800.
Bezrukova, M., Kildibekova, A., and Shakirova, F., WGA Reduces the Level of Oxidative Stress in Wheat Seedlings under Salinity, Plant Growth Regul., 2008, vol. 54, pp. 195–201.
Kholodova, V.P., Volkov, K.S., and Kuznetsov, Vl.V., Adaptation of the Common Ice Plant to High Copper and Zinc Concentrations and Their Potential Using for Phytoremediation, Russ. J. Plant Physiol., 2005, vol. 52, pp. 748–757.
Bezrukova, M.V., Kildibekova, A.R., Avalbaev, A.M., and Shakirova, F.M., Participation of Wheat Germ Agglutinin in Regulation of Cell Division in Apical Root Meristem of Wheat Seedlings, Tsitologiya, 2004, vol. 46, pp. 35–38.
Hsu, Y.T. and Kao, C.H., Cadmium-Induced Oxidative Damage in Rice Leaves Is Reduced by Polyamines, Plant Soil, 2007, vol. 29, pp. 27–37.
Davies, W.J., Kudoyarova, G.R., and Hartung, W., Long-Distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought, J. Plant Growth Regul., 2005, vol. 24, pp. 285–295.
Talanova, V.V., Akimova, T.V., and Titov, A.F., Effect of Whole Plant and Local Heating on the ABA Content in Cucumber Seedling Leaves and Roots and on Their Heat Tolerance, Russ. J. Plant Physiol., 2003, vol. 50, pp. 90–94.
Van Belleghem, F., Cuypers, A., Semane, B., Smeets, K., Vangronsveld, J., D’Haen, J., and Valcke, R., Subcellular Localization of Cadmium in Roots and Leaves of Arabidopsis thaliana, New Phytol., 2007, vol. 173, pp. 495–508.
Seregin, I.V. and Kozhevnikova, A.D., Roles of Root and Shoot Tissues in Transport and Accumulation of Cadmium, Lead, Nickel, and Strontium, Russ. J. Plant Physiol., 2008, vol. 55, pp. 1–22.
Guo, J., Hu, X., and Duan, R., Interactive Effects of Cytokinins, Light, and Sucrose on the Phenotypes and the Syntheses of Anthocyanins and Lignins in Cytokinin Overproducing Transgenic Arabidopsis, J. Plant Growth Regul., 2005, vol. 24, pp. 93–101.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © M.V. Bezrukova, R.A. Fatkhutdinova, A.R. Lubyanova, A.R. Murzabaev, V.V. Fedyaev, F.M. Shakirova, 2011, published in Fiziologiya Rastenii, 2011, Vol. 58, No. 6, pp. 907–914.
Rights and permissions
About this article
Cite this article
Bezrukova, M.V., Fatkhutdinova, R.A., Lubyanova, A.R. et al. Lectin involvement in the development of wheat tolerance to cadmium toxicity. Russ J Plant Physiol 58, 1048–1054 (2011). https://doi.org/10.1134/S1021443711060021
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1021443711060021
Keywords
- Triticum aestivum
- wheat germ agglutinin
- cadmium acetate
- mitotic index
- phytohormones
- lignification
- cadmium localization