Skip to main content
Log in

Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 1. Effects of continuous zinc presence on morphometric and physiological characteristics of developing pine seedlings

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effects of zinc (50–150 μM ZnSO4) on seed germinability, morphometric and physiological characteristics of Scots pine (Pinus sylvestris L.) seedlings during first 6 weeks of their development were studied. Scots pine turned out to be rather sensitive to elevated zinc concentrations. This was manifested in reduced seed germinability, root system growth retardation and suppression of its development (primarily, reduction in the size of the zone of secondary root formation, their number, and total length), a disturbance in the dynamics of biomass accumulation by various organs, primarily true needles, and also the content of main photosynthetic pigments. A specificity of zinc accumulation in seedling organs was established; it depended on the degree of root system development. A competition between cotyledons and needles for essential elements was observed. It was concluded that Scots pine high sensitivity to relatively low zinc concentrations (50–150 μM) makes it a more convenient model than currently used model plants (Arabidopsis thaliana L., Mesembryanthemum crystallinum L., Brassica napus L., and others) for studying physiological and molecular mechanisms of conifers adaptation to heavy metals and also for predictions of possible ecological consequences of environment pollution with zinc for tree phytocenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kabata-Pendias, A. and Mukherjee, A.B., Trace Elements from Soil to Human, Berlin: Springer-Verlag, 2007.

    Book  Google Scholar 

  2. Mineral Commodity Summaries, U.S. Geological Survey, 2011.

  3. Callender, E., Heavy Metals in the Environment—Historical Trends, Treatise on Geochemistry, vol. 9, Holland, H.D. and Turekian, K.K., Eds, Amsterdam: Elsevier, 2003, pp. 67–105.

    Chapter  Google Scholar 

  4. Nikonov, V.V., Lukina, N.V., Bezel’, V.S., Bel’skii, E.A., Bespalova, A.Yu., Golovchenko, A.V., Gorbacheva, T.T., Dobrovol’skaya, T.G., Dobrovol’skii, V.V., Zukert, N.V., Isaeva, L.G., Lapenis, A.G., Maksimova, I.A., Marfenina, O.E., Panikova, A.N., Pinskii, D.L., Polyanskaya, L.M., Stainnes, E., Utkin, A.I., Frontas’eva, M.V., Tsibul’skii, V.V., Chernov, I.Yu., and Yatsenko-Khmelevskaya, M.A., Rasseyannye elementy v boreal’nykh lesakh (Dissipated Elements in Boreal Forests), Isaev, A.S., Ed, Moscow: Nauka, 2004.

    Google Scholar 

  5. Hell, R. and Mendel, R.-R., Cell Biology of Metals and Nutrients, Berlin: Springer-Verlag, 2010.

    Book  Google Scholar 

  6. Jain, R., Srivastava, S., Solomon, S., Shrivastava, A.K., and Chandra, A., Impact of Excess Zinc on Growth Parameters, Cell Division, Nutrient Accumulation, Photosynthetic Pigments and Oxidative Stress of Sugarcane (Saccharum spp.), Acta Physiol. Plant., 2010, vol. 32, pp. 979–986.

    Article  CAS  Google Scholar 

  7. Lichtfouse, E., Navarrete, M., Debaeke, P., Souchere, V., and Alberola, C., Sustainable Agriculture, Berlin: Springer-Verlag, 2009.

    Book  Google Scholar 

  8. Paschke, M.W., Perry, L.G., and Redente, E.F., Zinc Toxicity Thresholds for Reclamation for Species, Water Air Soil Pollut., 2006, vol. 170, pp. 317–330.

    Article  CAS  Google Scholar 

  9. Reichman, S.M., Asher, C.J., Mulligan, D.R., and Menzies, N.W., Seedling Responses of Three Australian Tree Species to Toxic Concentrations of Zinc in Solution Culture, Plant Soil, 2001, vol. 235, pp. 151–158.

    Article  CAS  Google Scholar 

  10. Kholodova, V.P., Volkov, K.S., and Kuznetsov, Vl.V., Adaptation of the Common Ice Plant to High Copper and Zinc Concentrations and Their Potential Using for Phytoremediation, Russ. J. Plant Physiol., 2005, vol. 52, pp. 748–757.

    Article  CAS  Google Scholar 

  11. Ivanova, E.M., Kholodova, V.P., and Kuznetsov, Vl.V., Biological Effects of High Copper and Zinc Concentrations and Their Interaction in Rapeseed Plants, Russ. J. Plant Physiol., 2010, vol. 57, pp. 806–814.

    Article  CAS  Google Scholar 

  12. Dunn, C.E., Biogeochemistry in Mineral Exploration, Handbook of Exploration and Environmental Geochemistry Series, vol. 9, Hale, M., Ed., Berlin: Springer-Verlag, 2007.

    Google Scholar 

  13. Yang, Y., Sun, C., Yao, Y., Zhang, Y., and Achal, V., Growth and Physiological Responses of Grape (Vitis vinifera “Combier”) to Excess Zinc, Acta Physiol. Plant., DOI: 10.1007/s11738-010-0687-3.

  14. Hermle, S., Vollenweider, P., Gunthardt-Goerg, M.S., Mcquattie, C., and Matyssek, R., Leaf Responsiveness of Populus tremula and Salix viminalis to Soil Contaminated with Heavy Metals and Acidic Rainwater, Tree Physiol., 2007, vol. 27, pp. 1517–1531.

    PubMed  CAS  Google Scholar 

  15. Durand, T.C., Hausman, J.F., Carpin, S., Alberic, P., Baillif, P., Label, P., and Morabito, D., Zinc and Cadmium Effects on Growth and Ion Distribution in Populus tremula × Populus alba, Biol. Plant., 2010, vol. 54, pp. 191–194.

    Article  CAS  Google Scholar 

  16. Hartley-Whitaker, J., Cairney, J.W.G., and Meharg, A.A., Sensitivity to Cd or Zn of Host and Symbiont of Ectomycorrhizal Pinus sylvestris L. (Scots Pine) Seedlings, Plant Soil, 2000, vol. 218, pp. 31–42.

    Article  CAS  Google Scholar 

  17. Krupa, P. and Kozdroj, J., Ectomycorrhizal Fungi and Associated Bacteria Provide Protection against Heavy Metals in Inoculated Pine (Pinus sylvestris L.) Seedlings, Water, Air, Soil Pollut., 2007, vol. 182, pp. 83–90.

    Article  CAS  Google Scholar 

  18. Pravdin, L.F., Sosna obyknovennaya. Izmenchivost’, vnutrividovaya sistematika i selektsiya (Pinus sylvestris. Variability, Intraspecies Taxonomy, and Breeding), Moscow: Nauka, 1964.

    Google Scholar 

  19. Semena derev’ev i kustarnikov. Metody opredeleniya vskhozhesti (Seeds of Trees and Shrubs. Methods for Germinability Investigation), GOST 13056.6-97, 1998.

  20. Lichtenthaler, H.K., Chlorophylls and Carotenoids, Pigments of Photosynthetic Biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  21. Kaznina, N.M., Titov, A.F., Laidinen, G.F., and Talanov, A.V., Setaria viridis Tolerance of High Zinc Concentrations, Biol. Bull., 2009, vol. 36, pp. 575–581.

    Article  CAS  Google Scholar 

  22. Shah, F.U.R., Ahmad, N., Masood, K.R., Peralta-Videa, J.R., and Ahmad, F.U.D., Heavy Metal Toxicity in Plants, Plant Adaptation and Phytoremediation, Ashraf, M., Ozturk, M., and Ahmad, M.S.A., Eds, Berlin: Springer-Verlag, 2010.

    Google Scholar 

  23. Adriaensen, K., Vangronsveld, J., and Colpaert, J.V., Zinc-Tolerant Suillus bovinus Improves Growth of Zn-Exposed Pinus sylvestris Seedlings, Mycorrhiza, 2006, vol. 16, pp. 553–558.

    Article  PubMed  CAS  Google Scholar 

  24. Colpaert, J.V. and van Assche, J.A., Zinc Toxicity in Ectomycorrhizal Pinus sylvestris, Plant Soil, 1992, vol. 143, pp. 201–211.

    Article  CAS  Google Scholar 

  25. Stewart, J.McD., Oosterhuis, D., Heitholt, J.J., and Mauney, J., Physiology of Cotton, Berlin: Springer-Verlag, 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Ivanov.

Additional information

Original Russian Text © Yu.V. Ivanov, Yu.V. Savochkin, Vl.V. Kuznetsov, 2011, published in Fiziologiya Rastenii, 2011, Vol. 58, No. 5, pp. 728–736.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, Y.V., Savochkin, Y.V. & Kuznetsov, V.V. Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 1. Effects of continuous zinc presence on morphometric and physiological characteristics of developing pine seedlings. Russ J Plant Physiol 58, 871–878 (2011). https://doi.org/10.1134/S1021443711050104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711050104

Keywords

Navigation