Skip to main content
Log in

Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We analyzed the effects of NaCl stress on nine lines of Medicago truncatula, including four lines from southern Tunisia, three from the north, and two references lines. Plants were cultivated in two treatments (0 and 45 mM NaCl) for a period of 45 days. At harvest, we measured seven quantitative traits of the shoot and root growth. The analysis of variance showed that responses of lines to NaCl stress depended on the effects of line, treatment, and their interaction. Treatment had the largest effect. All measured traits showed high broad-sense heritability (H 2) under both treatments. While the leaf area was the less affected trait, the length of stems was the most affected regarding the sensitivity index (SI) parameter. Estimated SI for total plant biomass showed that TN13.11 and TN11.0 were the most contrasting lines with the lowest and the highest values, respectively. Established correlations between measured traits and the hierarchical cluster relationships among lines depended on the treatment effect. The site-of-origin environmental factor that influenced more the response of lines to NaCl stress was the relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADW:

aerial dry weight

AWC:

aerial water content

LA:

leaf area

LS:

length of stems

PCA:

principal component analysis

RDW:

root dry weight

RWC:

root water content

SI:

sensitivity index

References

  1. Araus, J., Slafer, L.G.A., Reynolds, M.P., and Royo, C., Plant Breeding and Drought in C-3 Cereals: What Should We Breed for? Ann. Bot., 2002, vol. 89, pp. 925–940.

    Article  PubMed  Google Scholar 

  2. Munns, R., James, R.A., and Laüchli, A., Approaches to Increasing the Salt Tolerance of Wheat and Other Cereals, J. Exp. Bot., 2006, vol. 57, pp. 1025–1043.

    Article  PubMed  CAS  Google Scholar 

  3. Chang, Y., Chen, S.L., Yin, W.L., Wang, R.G., Liu, Y.F., Shi, Y., Shen, Y.Y., Li, Y., Jiang, J., and Liu, Y., Growth Gas Exchange Abscisic Acid and Calmodulin Response to Salt Stress in Three Poplars, J. Integr. Plant Biol., 2006, vol. 48, pp. 286–293.

    Article  CAS  Google Scholar 

  4. Bohnert, H., Gong, J.Q., Li, P., and Ma, S., Unraveling Abiotic Stress Tolerance Mechanisms Getting Genomics Going, Curr. Opin. Plant Biol., 2006, vol. 9, pp. 180–188.

    Article  PubMed  CAS  Google Scholar 

  5. Munns, R., Husain, S., Rivelli, A.R., James, R.A., Tony-Condon, A.G., Lindsay, M.P., Lagudah, E.S., Schachtman, D.P., and Hare, R.A., Avenues for Increasing Salt Tolerance of Crops and the Role of Physiologically Based Selection Traits, Plant Soil, 2002, vol. 247, pp. 93–105.

    Article  CAS  Google Scholar 

  6. Merchan, F., de Lorenzo, L., Rizzo, S.G., Niebel, A., Manyani, H., Frugier, F., Sousa, C., and Crespi, M., Identification of Regulatory Pathways Involved in the Reacquisition of Root Growth after Salt Stress in Medicago truncatula, Plant J., 2007, vol. 51, pp. 1–17.

    Article  PubMed  CAS  Google Scholar 

  7. Zahran, H.H., Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate, Microbiol. Mol. Biol. Rep., 1999, vol. 63, pp. 968–989.

    CAS  Google Scholar 

  8. Savé, R., Castell, C., and Terradas, J., Gas Exchange and Water Relations, Ecology of Mediterranean Evergreen Oak Forest, Ecological Studies, Roda, F., Retama, J., Garcia, A., and Bellot, J., Eds., Berlin: Springer-Verlag, 1999, pp. 135–147.

    Google Scholar 

  9. Ben Salah, I., Albacete, A., Martinez-Andujar, C., Haouala, R., Labidi, N., Zribi, F., Martinez, V., Perez-Alfocea, F., and Abdelly, C., Response of Nitrogen Fixation in Relation to Nodule Carbohydrate Metabolism in Medicago ciliaris Lines Subjected to Salt Stress, J. Plant Physiol., 2009, vol. 166, pp. 477–488.

    Article  PubMed  CAS  Google Scholar 

  10. Barker, D.G., Bianchi, S., Blondon, F., Dattée, Y., Duc, G., Flament, P., Gallusci, P., Génier, G., Guy, P., Muel, X., Tourneur, J., Dénarié, J., and Huguet, T., Medicago truncatula, a Model for Studying the Molecular Genetics of the Rhizobium-Legume Symbiosis, Plant Mol. Biol. Rep., 1990, vol. 8, pp. 40–49.

    Article  CAS  Google Scholar 

  11. Blondon, F., Marie, D., Brown, S., and Kondorosi, A., Genome Size and Base Composition in Medicago sativa, and M. truncatula Species, Genome, 1994, vol. 37, pp. 224–274.

    Article  Google Scholar 

  12. Limami, A.M., Ricoult, C., and Planchet, E., Response of Medicago truncatula to Flooding Stress, Medicago truncatula Handbook, 2007, pp. 3–6.

  13. González, E.M., Ladrera, R., Larrainzar, E., and Arrese-Igor, C., Response of Medicago truncatula to Drought Stress, Medicago truncatula Handbook, 2007, pp. 7–12.

  14. Aydi, S., Drevon, J.J., and Abdelly, C., Effect of Salinity on Root-Nodule Conductance to the Oxygen Diffusion in the Medicago truncatula-Sinorhizobium meliloti Symbiosis, Plant Physiol. Biochem., 2004, vol. 42, pp. 833–840.

    Article  PubMed  CAS  Google Scholar 

  15. Avia, K. and Lejeune-Hénaut, I., Acclimation of Medicago truncatula to Cold Stress, Medicago truncatula Handbook, 2007, pp. 17–22.

  16. Ané, J.M., Levy, J., Thoquet, P., Kulikova, O., de Billy, F., Penmetsa, V., Kim, D.J., Debellé, F., Rosenberg, C., Cook, D.R., Bisseling, T., Huguet, T., and Dénarié, J., Genetic and Cytogenetic Mapping of DMI1, DMI2, and DMI3 Genes of Medicago truncatula Involved in Nod Factor Transduction, Nodulation, and Mycorrhization, Mol. Plant-Microbe Interact., 2002, vol. 15, pp. 1108–1118.

    Article  PubMed  Google Scholar 

  17. Arraouadi, S., Badri, M., Jaleel, C.A., Djébali, N., Ilahi, H., Huguet, T., and Aouani, M.E., Analysis of Genetic Variation in Natural Populations of Medicago truncatula of Southern Tunisian Ecological Areas, Using Morphological Traits and SSR Markers, Tropical Plant Biol., 2009, vol. 2, pp. 122–132.

    Article  CAS  Google Scholar 

  18. Lazrek, F., Roussel, V., Ronfort, J., Cardinet, G., Chardon, F., Aouani, M.E., and Huguet, T., The Use of Neutral and Non-Neutral SSRs to Analyze the Genetic Structure of a Tunisian Collection of Medicago truncatula Lines and to Reveal Associations with Eco-Environmental Variables, Genetica, 2009, vol. 135, pp. 391–402.

    Article  PubMed  CAS  Google Scholar 

  19. Badri, M., Ilahi, H., Huguet, T., and Aouani, M.E., Quantitative and Molecular Genetic Variation in Sympatric Populations of Medicago laciniata and M. truncatula (Fabaceae): Relationships with Eco-Geographical Factors, Genet. Res., 2007, vol. 89, pp. 107–122.

    Article  PubMed  CAS  Google Scholar 

  20. Bonnin, I., Prosperi, J.M., and Olivieri, I., Comparison of Quantitative Genetic Parameters between Two Natural Populations of a Selfing Plant Species, Medicago truncatula Gaertn., Theor. Appl. Genet., 1997, vol. 94, pp. 641–651.

    Article  Google Scholar 

  21. Court-Picon, M., Gadbin-Henry, C., Guibal, F., and Roux, M., Dendrometry and Morphometry of Pinus pinea, L. Lower Provenance (France): Adaptability and Variability of Provenances, Forest Ecol. Manag., 2004, vol. 194, pp. 319–333.

    Article  Google Scholar 

  22. Gomez-Mestre, I. and Tejedo, M., Contrasting Patterns of Quantitative and Neutral Genetic Variation in Locally Adapted Populations of the Natterjack Toad, Bufo calamita, Evolution, 2004, vol. 58, pp. 2343–2352.

    CAS  Google Scholar 

  23. Slama, I., Messedi, D., Ghnaya, T., Savouré, A., and Abdelly, C., Effects of Water Deficit on Growth and Proline Metabolism in Sesuvium portulacastrum, Environ. Exp. Bot., 2006, vol. 56, pp. 231–238.

    Article  CAS  Google Scholar 

  24. Ruiz-Shchez, M., Domingo, C.R., Torrecilla, A., and Pérez-Pastro, A., Water Stress Preconditioning to Improve Drought Resistance in Young Apricot Plants, Plant Sci., 2000, vol. 156, pp. 245–251.

    Article  Google Scholar 

  25. Rodriguez, P., Torrecillas, A., Morales, M.A., Ortuno, M.F., and Sanchez-Blanco, M.J., Effects of NaCl Salinity and Water Stress on Growth and Leaf Water Relations of Asteriscus maritimus Plants, Environ. Exp. Bot., 2005, vol. 53, pp. 113–123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arraouadi.

Additional information

This test was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arraouadi, S., Badri, M., Zitoun, A. et al. Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula . Russ J Plant Physiol 58, 316–323 (2011). https://doi.org/10.1134/S1021443711020026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711020026

Keywords

Navigation