Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas reinhardtii

  • A. G. Markelova
  • M. P. Sinetova
  • E. V. Kupriyanova
  • N. A. ProninaEmail author
Research Papers


Localization of lumenal carbonic anhydrase Cah3 in thylakoid membranes of Chlamydomonas reinhardtii was studied using wild-type algae and photosynthetic mutants with different composition of chlorophyll-protein complexes in the photosystems. In addition, the photosynthetic characteristics of wild-type C. reinhardtii and cia3 mutants lacking the activity of carbonic anhydrase Cah3 were examined. Western blot analysis revealed the lack of cross reaction with antibodies to Cah3 in the mutant lacking the photosystem II (PSII) reaction center, in contrast to the mutant deficient in light-harvesting complex of PSII. These data show that the lumenal Cah3 is associated with polypeptides on the donor side of PSII reaction center. Using immunoelectron microscopy and antibodies to Cah3 from C. reinhardtii, we showed for the first time that the major part of thylakoid Cah3 is localized in the pyrenoid where the bulk of Rubisco is located. The rate of photosynthetic oxygen evolution and PSII photochemical efficiency were lower in C. reinhardtii cia3 mutant than in the wild type, especially in the cells grown at limiting CO2 concentrations. These observations show that Cah3 takes part in CO2-concentrating mechanism of the chloroplast. The results support our hypothesis [1, 2] that the carboxylation reaction in microalgae proceeds in the pyrenoid, a specific Rubisco-containing part of the chloroplast, which acquires CO2 from the lumen of intrapyrenoid thylakoids. We discuss significance of the pyrenoid as an autonomous metabolic microcompartment, in which Cah3 plays a key role in the production and concentration of CO2 for Rubisco. These functions may promote the photosynthetic efficiency owing to the effective CO2 supply for the Calvin cycle.

Key words

Chlamydomonas reinhardtii photosynthetic mutants cia3 CCM-mutant localization of thylakoid carbonic anhydrase Cah3 photosystem II pyrenoid immunoelectron microscopy 



carbonic anhydrase


concentrating mechanism


inorganic carbon


light-harvesting complex


phosphate buffer solution


photosystem II


  1. 1.
    Pronina, N.A. and Semenenko, V.E., Pyrenoid Role in CO2 Concentrating and Fixation in Microalga Chloroplast, Sov. Plant Physio., 1992, vol. 39, pp. 723–732.Google Scholar
  2. 2.
    Pronina, N.A. and Borodin, V.V., CO2 Stress and CO2 Concentration Mechanism: Investigation by Means of Photosystem-Deficient and Carbonic Anhydrase-Deficient Mutants of Chlamydomonas reinhardtii, Photosynthetica, 1993, vol. 28, pp. 515–522.Google Scholar
  3. 3.
    Markelova, A.G., Vladimirova, M.G., and Semenenko, V.E., Ultrastructural Localization of Ribulose-1,5-Bisphosphate Carboxylase in Algal Cells, Sov. Plant Physio., 1990, vol. 37, pp. 907–911.Google Scholar
  4. 4.
    Konstantinova, I.A. and Boldina, O.N., Comparative Analysis of the Pyrenoid Ultrastructure in Green Monad and Coccoid Algae, Russ. J. Plant Physio., 2000, vol. 47, pp. 655–659.Google Scholar
  5. 5.
    Kuchitsu, K., Tsuzuki, M., and Miyachi, S., Polypeptide Composition and Enzyme Activities of the Pyrenoid and Its Regulation by CO2 Concentration in Unicellular Green Algae, Can. J. Bot., 1991, vol. 69, pp. 1062–1069.CrossRefGoogle Scholar
  6. 6.
    Rawat, M., Henk, M.C., Lavigne, L.L., and Moroney, J.V. Chlamydomonas reinhardtii Mutants without Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase Lack a Detectable Pyrenoid, Planta, 1996, vol. 198, pp. 263–270.CrossRefGoogle Scholar
  7. 7.
    Moroney, J.V. and Chen, Z.Y., The Role of the Chloroplast in Inorganic Carbon Uptake by Eukaryotic Algae, Can. J. Bot., 1998, vol. 76, pp. 1025–1034.CrossRefGoogle Scholar
  8. 8.
    Badger, M.R. and Spalding, M.H., CO2 Acquisition, Concentration and Fixation in Cyanobacteria and Algae, Photosynthesis: Physiology and Metabolism, Leegood, R.C., Sharkey, T.D., and Caemmerer, S., Eds., Dordrecht: Kluwer, 2000, pp. 369–397.Google Scholar
  9. 9.
    Kaplan, A. and Reinhold, L., CO2 Concentrating Mechanism in Photosynthetic Microorganisms, Annu. Rev. Plant Physiol. Plant Mol. Bio., 1999, vol. 50, pp. 539–570.CrossRefGoogle Scholar
  10. 10.
    McKay, R.M.L. and Gibbs, S.P., Composition and Function of Pyrenoids: Cytochemical and Immunocytochemical Approaches, Can. J. Bot., 1991, vol. 69, pp. 1040–1052.CrossRefGoogle Scholar
  11. 11.
    Raven, J.A., CO2 Concentrating Mechanisms: A Role for Thylakoid Lumen Acidification? Plant, Cell Environ., 1997, vol. 20, pp. 147–154.CrossRefGoogle Scholar
  12. 12.
    Price, G.D., Coleman, J.R., and Badger, M.R., Association of Carbonic Anhydrase Activity with Carboxysomes Isolated from the Cyanobacterium Synechococcus PCC7942, Plant Physio., 1992, vol. 100, pp. 784–793.CrossRefGoogle Scholar
  13. 13.
    So, A.K. and Espie, G.S., Cloning, Characterization and Expression of Carbonic Anhydrase from the Cyanobacterium Synechocystis PCC6803, Plant Mol. Bio., 1998, vol. 37, pp. 205–215.CrossRefGoogle Scholar
  14. 14.
    Pronina, N.A. and Semenenko, V.E., Membrane-Bound Carbonic Anhydrase Takes Part in CO2 Concentration in Algae Cells, Current Research in Photosynthesis, Baltscheffski, M., Ed., Boston; London: Kluwer, 1990, pp. 498–502.Google Scholar
  15. 15.
    Van Hunnik, E. and Sultemeyer, D., A Possible Role for Carbonic Anhydrase in the Lumen of Chloroplast Thylakoids in Green Algae, Funct. Plant Bio., 2002, vol. 29, pp. 243–249.CrossRefGoogle Scholar
  16. 16.
    Karlsson, J., Clarke, A.K., Chen, Z.Y., Hugghin, S.Y., Par, Y.I., Husic, H.D., Moroney, J.V., and Samuelsson, G., A Novel Alpha-Type Carbonic Anhydrase Associated with the Thylakoid Membrane in Chlamydomonas reinhardtii Is Required at Ambient CO2, EMBO J., 1998, vol. 17, pp. 1208–1216.CrossRefPubMedGoogle Scholar
  17. 17.
    Park, Y.I., Karlsson, J., Rojdestvenski, I., Pronina, N., Klimov, V., Oquist, G., and Samuelsson, G., Role of a Novel Photosystem II-Associated Carbonic Anhydrase in Photosynthetic Carbon Assimilation in Chlamydomonas reinhardtii, FEBS Lett., 1999, vol. 444, pp. 102–105.CrossRefPubMedGoogle Scholar
  18. 18.
    Pronina, N.A., Zhila, N.M., and Semenenko, V.E., Two Forms of Carbonic Anhydrase in Dunaliella salina Cells: Isolation and Properties, Russ. J. Plant Physio., 1999, vol. 46, pp. 62–68.Google Scholar
  19. 19.
    Villarejo, A., Shutova, T., Moskvin, O., Forssen, M., Klimov, V.V., and Samuelsson, G., A Photosystem II-Associated Carbonic Anhydrase Regulates the Efficiency of Photosynthetic Oxygen Evolution, EMBO J., 2002, vol. 21, pp. 1930–1938.CrossRefPubMedGoogle Scholar
  20. 20.
    Hanson, D.T., Franklin, L.A., Samuelsson, G., and Badger, M.R., The Chlamydomonas reinhardtii cia3 Mutant Lacking a Thylakoid Lumen-Localized Carbonic Anhydrase Is Limited by Supply to Rubisco and Not Photosystem II Function In Vivo, Plant Physio., 2003, vol. 132, pp. 2267–2275.CrossRefGoogle Scholar
  21. 21.
    Ladygin, V.G., Structural and Functional Organization of Photosystems in Chlamydomonas reinhardtii Chloroplasts, Russ. J. Plant Physio., 1998, vol. 45, pp. 655–675.Google Scholar
  22. 22.
    Moroney, J.V., Husic, H.D., Tolbert, N.E., Kitayama, M., Manuel, L.J., and Togasaki, R.K., Isolation and Characterization of a Mutant of Chlamydomonas reinhardtii Deficient in the CO2 Concentration Mechanism, Plant Physio., 1989, vol. 89, pp. 897–903.CrossRefGoogle Scholar
  23. 23.
    Griffiths, D.J., The Pyrenoid, Bot. Rev., 1970, vol. 36, pp. 29–58.CrossRefGoogle Scholar
  24. 24.
    Moroney, J.V., Bartlett, S.G., and Samuelsson, G., Carbonic Anhydrase in Plants and Algae, Plant, Cell Environ., 2001, vol. 24, pp. 141–153.CrossRefGoogle Scholar
  25. 25.
    Van Hunnik, E., Livne, A., Pogenberg, V., Spijkerman, A.E., Ende, H., Mendoza, E.G., Sultemeyer, D., and Leeuw, J.V., Identification and Localization of Thylakoid-Bound Carbonic Anhydrase from Green Algae Tetraedron minimum (Chlorophyta) and Chlamydomonas noctigata (Chlorophyta), Planta, 2001, vol. 212, pp. 454–459.CrossRefPubMedGoogle Scholar
  26. 26.
    Morita, E., Abe, T., Tsuzuki, M., Fujiwana, S., and Sato, N., Role of Pyrenoids in the CO2-Concentrating Mechanism: Comparative Morphology, Physiology and Molecular Phylogenetic Analysis of Closely Related Strains of Chlamydomonas and Chloromonas, Planta, 2000, vol. 208, pp. 365–372.CrossRefGoogle Scholar
  27. 27.
    Mitra, M., Lato, S.M., Ynalvez, R.A., Xiao, Y., and Moroney, J.V., Identification of a New Chloroplast Carbonic Anhydrase in Chlamydomonas reinhardtii, Plant Physio., 2004, vol. 135, pp. 173–182.CrossRefGoogle Scholar
  28. 28.
    Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J., Terentyev, V., Chernyshov, S., Allakhverdiev, S.I., Klimov, V.V., Dau, H., and Samuelsson, G., The Photosystem II-Associated Cah3 in Chlamydomonas Enhance the O2 Evolution Rate by Proton Removal, EMBO J., 2008, vol. 27, pp. 782–791.CrossRefPubMedGoogle Scholar
  29. 29.
    Virgin, I., Styring, S., and Andersson, B., Photosystem II Disorganization and Manganese Release after Photoin-hibition of Isolated Spinach Thylakoid Membranes, FEBS Lett., 1988, vol. 233, pp. 408–412.CrossRefGoogle Scholar
  30. 30.
    Kramer, D.M. and Sacksteder, C.A., How Acidic Is the Lumen? Photosynth. Res., 1999, vol. 60, pp. 151–163.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. G. Markelova
    • 1
  • M. P. Sinetova
    • 1
  • E. V. Kupriyanova
    • 1
  • N. A. Pronina
    • 1
    Email author
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations