Russian Journal of Plant Physiology

, Volume 56, Issue 6, pp 727–741 | Cite as

At the beginning of the route: ABA perception and signal transduction in plants

  • G. V. NovikovaEmail author
  • N. S. Stepanchenko
  • A. V. Nosov
  • I. E. Moshkov


Nowadays, fundamentally important data toward the molecular mechanisms of phytohormone action, starting from hormonal signal perception and up to changes in hormone-regulated gene expression, became available. Signaling mechanisms for plant cell responses to ABA remained the least known. Although a substantial progress was achieved in our understanding of the role of protein kinases and protein phosphatases functioning downstream receptors, identification of ABA receptors has induced very hot debates. This review summarizes information obtained during the last decade and concerned the molecular mechanisms of perception and signal transduction of ABA signal in plants.

Key words

plant ABA ABA receptors ABA signal transduction protein kinases mitogen-activated protein kinases protein phosphatases 



ABA-activated protein kinase


ABA-binding Protein 1


putative abscisic acid receptor


ABA insensitive


ABA hypersensitive germination 1/3


AAPK interacting protein 1


ABA-activated MBP kinase


AMP-activated Protein Kinase


ABA Responsive Element Binding protein


basic-leucine Zipper


H-subunit of trimeric Mg2+-protoporphirin-IX chelatase complex (Mg-chelatase)


casein kinase 2


enchanced response to ABA


extracellular signal-regulated kinase


Flowering time Control protein A


Flowering Locus C


Flowering locus Y

GCL1 and GCL 2

GCR 2-like protein 1 and 2


G-protein-coupled receptor 1


G-protein-coupled receptor 2


G-protein-coupled receptor


GTP-binding proteins


hypersensitive to ABA 1/2


Lanthionine synthetase C-like 1 and 2


Leu-Rich Repeat


mitogen-activated protein kinase


MAPK kinase


kinase of MAPK kinase


myelin basic protein


open stomata1


phosphatidic acid


phospholipase Dα1


Protein Phosphatase


protein Tyr phosphatase

rcn 1

roots curl naphthylphtalamic acid 1


Receptor-like Protein Kinase 1


stress-activated protein kinase


Sucrose Non-fermenting kinase 1

SnRK kinase

Sucrose Non-fermenting related kinase

UBA2a and UBA2b

poly(U)-binding associated


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nilson, S.E. and Assmann, S.M., The Control of Transpiration. Insights from Arabidopsis, Plant Physiol., 2007, vol. 143, pp. 19–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoth, S., Morgante, M., Sanchez, J.P., Hanafey, M.K., Tingey, S.V., and Chua, N.H., Genome-Wide Gene Expression Profiling in Arabidopsis thaliana Reveals New Targets of Abscisic Acid and Largely Impaired Gene Regulation in the abi1-1 Mutant, J. Cell Sci., 2002, vol. 115, pp. 4891–4900.PubMedCrossRefGoogle Scholar
  3. 3.
    Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawaj, J., Hayashizaki, Y., and Shinozaki, K., Monitoring the Expression Pattern of around 7000 Arabidopsis Genes under ABA Treatments Using a Full-Length cDNA Microarray, Funct. Integr. Genom., 2002, vol. 2, pp. 282–291.CrossRefGoogle Scholar
  4. 4.
    Leonhardt, N., Kwak, J.M., Robert, N., Waner, D., Leonardt, G., and Schroeder, J.I., Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C Mutant, Plant Cell, 2004, vol. 16, pp. 596–615.PubMedCrossRefGoogle Scholar
  5. 5.
    Takahashi, S., Seki, M., Ishida, J., Satou, M., Sakurai, T., Narusaka, M., Kamiya, A., Nakajima, M., Enju, A., Akiyama, K., Yamaguchi-Shinozaki, K., and Shinozaki, K., Monitoring the Expression Profiles of Genes Induced by Hyperosmotic, High Salinity, and Oxidative Stress and Abscisic Acid Treatment in Arabidopsis Cells Culture Using a Full-Length cDNA Microarray, Plant Mol. Biol., 2004, vol. 56, pp. 29–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang, D., Jaradat, M.R., Wu, W., Ambrose, S.J., Ross, A.R., Abrams, S.R., and Cutler, A.J., Structural Analogs of ABA Reveal Novel Features of ABA Perception and Signaling in Arabidopsis, Plant J., 2007, vol. 50, pp. 414–428.PubMedCrossRefGoogle Scholar
  7. 7.
    Barrero, J.M., Piqueras, P., Gonzälez-Guzmän, M., Serrano, R., Rodriguez, P.L., Ponce, M.R., and Micol, J.L., A Mutational Analysis of the ABA1 Gene of Arabidopsis thaliana Highlights the Involvement of ABA in Vegetative Development, J. Exp. Bot., 2005, vol. 56, pp. 2071–2083.PubMedCrossRefGoogle Scholar
  8. 8.
    Sharp, R.E. and LeNoble, M.E., ABA, Ethylene and the Control of Shoot and Root Growth under Water Stress, J. Exp. Bot., 2002, vol. 53, pp. 33–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Benschop, J.J., Millenaar, F.F., Smeets, M.E., van Zanten, M., Voesenek, L.A.C.J., and Peeters, A.J.M., Abscisic Acid Antagonized Ethylene-Induced Hyponastic Growth in Arabidopsis, Plant Physiol., 2007, vol. 143, pp. 1013–1023.PubMedCrossRefGoogle Scholar
  10. 10.
    Grossmann, K. and Hansen, H., Ethylene Triggered Abscisic Acid: A Principle in Plant Growth Regulation? Physiol. Plant., 2001, vol. 113, pp. 9–14.CrossRefGoogle Scholar
  11. 11.
    Chiwocha, S.D.S., Cutler, A.J., Abrams, S.R., Ambrose, S.J., Yang, J., Ross, A.R.S., and Kermode, A.R., The etr1-2 Mutation in Arabidopsis thaliana Affects the Abscisic Acid, Auxin, Cytokinin and Gibberellin Metabolic Pathways during Maintenance of Seed Dormancy, Moist-Chilling and Germination, Plant J., 2005, vol. 42, pp. 35–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Nambara, E. and Marion-Poll, A., ABA Biosynthesis and Catabolism, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 165–185.PubMedCrossRefGoogle Scholar
  13. 13.
    Finkelstein, R.R., Gampala, S.S.L., and Rock, C.D., Abscisic Acid Signaling in Seeds and Seedlings, Plant Cell, 2002, vol. 14, suppl., pp. S15–S45.Google Scholar
  14. 14.
    Himmelbach, A., Yang, Y., and Grill, E., Relay and Control of Abscisic Acid Signalling, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 470–479.PubMedCrossRefGoogle Scholar
  15. 15.
    Roelfsema, M.R.G. and Hedrich, R., In the Light of Stomatal Opening: New Insights into “the Watergate”, New Phytol., 2005, vol. 167, pp. 665–691.PubMedCrossRefGoogle Scholar
  16. 16.
    Israelsson, M., Siegel, R.S., Young, J., Hashimoto, M., Iba, K., and Schroeder, J.I., Guard Cell ABA and CO2 Signaling Network Updates and Ca2+ Sensor Priming Hypothesis, Curr. Opin. Plant Biol., 2006, vol. 9, pp. 654–663.PubMedCrossRefGoogle Scholar
  17. 17.
    Shinozaki, K. and Yamaguchi-Shinozaki, K., Gene Networks Involved in Drought Stress Response and Tolerance, J. Exp. Bot., 2007, vol. 58, pp. 221–227.PubMedCrossRefGoogle Scholar
  18. 18.
    Asselberg, B., de Vleesschauwer, D., and Hofte, M., Global Switches and Fine-Tuning — ABA Modulates Plant Pathogen Defense, Mol. Plant-Microbe Interact., 2008, vol. 21, pp. 709–719.CrossRefGoogle Scholar
  19. 19.
    De Smet, I., Zhang, H., Inze, D., and Beeckman, T., A Novel Role for Abscisic Acid Emerges from Underground, Trends Plant Sci., 2006, vol. 11, pp. 434–439.PubMedCrossRefGoogle Scholar
  20. 20.
    Razem, F.A., Luo, M., Liu, J.-H., Abrams, S.R., and Nill, R.D., Purification and Characterization of a Barley Aleurone Abscisic Acid-Binding Protein, J. Biol. Chem., 2004, vol. 279, pp. 9922–9929.PubMedCrossRefGoogle Scholar
  21. 21.
    Osakahe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Leucine-Rich Repeat Receptor-Like Kinase 1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis, Plant Cell, 2005, vol. 17, pp. 1105–1119.CrossRefGoogle Scholar
  22. 22.
    Nambara, E., Suzuki, M., Abrams, S., McCarty, D.R., Kamiya, Y., and McCourt, P., A Screen for Genes That Function in Abscisic Acid Signaling in Arabidopsis thaliana, Genetics, 2002, vol. 161, pp. 1247–1255.PubMedGoogle Scholar
  23. 23.
    Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., and Dean, C., FCA, a Gene Controlling Flowering Time in Arabidopsis, Encodes a Protein Containing RNA-Binding Domains, Cell, 1997, vol. 89, pp. 737–745.PubMedCrossRefGoogle Scholar
  24. 24.
    Razem, F., El-Kereamy, A., Abrams, S., and Hill, R., The RNA-Binding Protein FCA Is an Abscisic Acid Receptor, Nature, 2006, vol. 439, pp. 290–294.PubMedCrossRefGoogle Scholar
  25. 25.
    Hirayama, T. and Shinozaki, K., Perception and Transduction of Abscisic Acid Signals: Keys to the Function of the Versatile Plant Hormone ABA, Trends Plant Sci., 2007, vol. 12, pp. 343–351.PubMedCrossRefGoogle Scholar
  26. 26.
    Risk, J.M., Macknight, R.C., and Day, C.L., FCA Does Not Bind Abscisic Acid, Nature, 2008, vol. 456, pp. E5–E6.PubMedCrossRefGoogle Scholar
  27. 27.
    Jang, Y.H., Lee, J.H., and Kim, J.-K., Abscisic Acid Does Not Disrupt either the Arabidopsis FCA-FY Interaction or Its Rice Counterpart In Vitro, Plant Cell Physiol., 2008, vol. 49, pp. 1898–1901.PubMedCrossRefGoogle Scholar
  28. 28.
    Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D., Retraction: The RNA-Binding Protein FCA Is an Abscisic Acid Receptor, Nature, 2008, vol. 456, p. 824.PubMedCrossRefGoogle Scholar
  29. 29.
    Shen, Y.-Y., Wang, X.-F., Wu, F.-Q., Du, S.-Y., Cao, Z., Shang, Y., Wang, X.-L., Peng, C.-C., Yu, X.-C., Zhu, S.-Y., Fan, R.-C., Xu, Y.-H., and Zhang, D.-P., The Mg-Chelatase H Subunit Is an Abscisic Acid Receptor, Nature, 2006, vol. 443, pp. 823–826.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang, D.-P., Wu, Z.Y., Li, X.Y., and Zhao, Z.X., Purification and Identification of a 42-Kilodalton Abscisic Acid-Specific-Binding Protein from Epidermis of Broad Bean Leaves, Plant Physiol., 2002, vol. 128, pp. 714–725.PubMedCrossRefGoogle Scholar
  31. 31.
    Müller, A.H. and Hansson, M. The Barley Magnesium Chelatase 150-kDa Subunit Is Not an Abscisic Acid Receptor, Plant Physiol., 2009, vol. 150, pp. 157–166.PubMedCrossRefGoogle Scholar
  32. 32.
    Jones, A.M. and Assmann, S.M., Plants: The Latest Model System for G-Protein Research, EMBO Rep., 2004, vol. 5, pp. 572–578.PubMedCrossRefGoogle Scholar
  33. 33.
    Pandey, S., Chen, J.G., Jones, A.M., and Assmann, S.M., G-Protein Complex Mutants Are Hypersensitive to Abscisic Acid Regulation of Germination and Postgermination Development, Plant Physiol., 2006, vol. 141, pp. 243–256.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu, X., Yue, Y., Li, B., Nie, Y., Li, W., Wu, W.-H., and Ma, L., A G Protein-Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid, Science, 2007, vol. 315, pp. 1712–1716.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu, X., Yue, Y., Li, W., and Ma, L., Response to Comment on “A G Protein-Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid”, Science, 2007, vol. 318, p. 914d.CrossRefGoogle Scholar
  36. 36.
    Johnston, C.A., Temple, B.R., Chen, J.-G., Gao, Y., Moriyama, E.N., Jones, A.M., Siderovski, D.P., and Willard, F.S., Comment on “A G Protein-Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid”, Science, 2007, vol. 318, p. 914.PubMedCrossRefGoogle Scholar
  37. 37.
    Gao, Y., Zeng, Q., Guo, J., Cheng, J., Ellis, B.E., and Chen, J.-G., Genetic Characterization Reveals No Role for the Reported ABA Receptor, GCR2, in ABA Control of Seed Germination and Early Seedling Development in Arabidopsis, Plant J., 2007, vol. 52, pp. 1001–1013.PubMedCrossRefGoogle Scholar
  38. 38.
    Illingworth, C.J.R., Parkes, K.E., Snell, C.R., Mullineaux, Ph.M., and Reynolds, C.A., Criteria for Confirming Sequence Periodicity Identified by Fourier Transform Analysis: Application to GCR2, a Candidate Plant GPCR? Biophys. Chem., 2008, vol. 133, pp. 28–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Guo, J., Zeng, Q., Emami, M., Ellis, B.E., and Chen, J.-G., The GCR2 Gene Family Is Not Required for ABA Control of Seed Germination and Early Seedling Development in Arabidopsis, PloS ONE, 2008, vol. 3 e2982, DOI: 101371/journal.pone.0002982.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen, J.C. and Ellis, B.E., GCR2 Is a New Member of the Eukaryotic Lanthionine Synthetase Component C-Like Protein Family, Plant Signal. Behavior., 2008, vol. 3, pp. 307–310.Google Scholar
  41. 41.
    Pandey, S., Nelson, D.C., and Assmann, S.M., Two Novel GPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis, Cell, 2009, vol. 136, pp. 136–148.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., and Snyder, M., Analysis of Yeast Protein Kinases Using Protein Chips, Nat. Genet., 2000, vol. 26, pp. 283–289.PubMedCrossRefGoogle Scholar
  43. 43.
    Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S., The Protein Kinase Complement of the Human Genome, Science, 2002, vol. 298, pp. 1912–1934.PubMedCrossRefGoogle Scholar
  44. 44.
    Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T., and Manning, G., The Mouse Kinome: Discovery and Comparative Genomics of All Mouse Protein Kinases, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 11707–11712.PubMedCrossRefGoogle Scholar
  45. 45.
    The Arabidopsis Genome Initiative. Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana, Nature, 2000, vol. 408, pp. 796–815.CrossRefGoogle Scholar
  46. 46.
    Kerk, D., Bulgrien, J., Smith, D.W., Barsam, B., Veretnik, S., and Gribskov, M., The Complement of Protein Phosphatase Catalytic Subunits Encoded in the Genome of Arabidopsis, Plant Physiol., 2002, vol. 129, pp. 908–925.PubMedCrossRefGoogle Scholar
  47. 47.
    Li, J. and Assmann, S.M., An Abscisic Acid-Activated and Calcium-Dependent Protein Kinase from Guard Cells of Fava Bean, Plant Cell, 1996, vol. 8, pp. 2359–2368.PubMedCrossRefGoogle Scholar
  48. 48.
    Li, J., Wang, X.-Q., Watson, M.B., and Assmann, S.M., Regulation of Abscisic Acid-Induced Stomatal Closure and Anion Channels by Guard Cell AAPK Kinase, Science, 2000, vol. 287, pp. 300–303.PubMedCrossRefGoogle Scholar
  49. 49.
    Li, J., Kinoshita, T., Pandey, S., Ng, C.K.-Y., Gygi, S.P., Shimazaki, K.-I., and Assmann, S.M., Modulation of an RNA-Binding Protein by Abscisic-Acid-Activated Protein Kinase, Nature, 2002, vol. 418, pp. 793–797.PubMedCrossRefGoogle Scholar
  50. 50.
    Riera, M., Redko, Y., and Leung, J., Arabidopsis RNABinding Protein UBA2a Relocalizes into Nuclear Speckles in Response to Abscisic Acid, FEBS Lett., 2006, vol. 580, pp. 4160–4165.PubMedCrossRefGoogle Scholar
  51. 51.
    Tillemans, V., Leponcea, I., Rausina, G., Dispaa, L., and Motte, P., Insights into Nuclear Organization in Plants as Revealed by the Dynamic Distribution of Arabidopsis SR Splicing Factors, Plant Cell, 2006, vol. 18, pp. 3218–3234.PubMedCrossRefGoogle Scholar
  52. 52.
    Mustilli, A.C., Merlot, S., Vavasseurb, A., Fenzia, F., and Giraudat, J., Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production, Plant Cell, 2002, vol. 14, pp. 3089–3099.PubMedCrossRefGoogle Scholar
  53. 53.
    Yoshida, R., Habo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Alonso, J., Ecker, J.R., and Shinozaki, K., ABA-Activated SnRK Protein Kinase Is Required for Dehydration Stress Signaling in Arabidopsis, Plant Cell Physiol., 2002, vol. 43, pp. 1473–1483.PubMedCrossRefGoogle Scholar
  54. 54.
    Hrabak, E.M., Chan, C.W.M., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.-K., and Harmon, A.C., The Arabidopsis CDPKSnRK Superfamily of Protein Kinases, Plant Physiol., 2003, vol. 132, pp. 666–680.PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson, R.R., Wagner, R.L., Verhey, S.D., and Walker-Simmons, M.K., The Abscisic Acid-Responsive Kinase PKABA1 Interacts with a Seed-Specific Abscisic Acid Response Element-Binding Factor, TaABF, and Phosphorylates TaABF Peptide Sequences, Plant Physiol., 2002, vol. 130, pp. 837–846.PubMedCrossRefGoogle Scholar
  56. 56.
    Fujii, H., Verslues, P.E., and Zhu, J.-K., Identification of Two Protein Kinases Required for Abscisic Acid Regulation of Seed Germination, Root Growth, and Gene Expression in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 485–494.PubMedCrossRefGoogle Scholar
  57. 57.
    Boudsocq, M., Barbier-Brygoo, H., and Lauriere, C., Identification of Nine Sucrose Nonfermenting 1-Related Protein Kinases 2 Activated by Hyperosmotic and Saline Stresses in Arabidopsis thaliana, J. Biol. Chem., 2004, vol. 279, pp. 41 758–41 766.Google Scholar
  58. 58.
    Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., and Hattori, T., Differential Activation of the Rice Sucrose Nonfermenting1-Related Protein Kinase 2 Family by Hyperosmotic Stress and Abscisic Acid, Plant Cell, 2004, vol. 16, pp. 1163–1177.PubMedCrossRefGoogle Scholar
  59. 59.
    Boudsocq, M., Droillard, M.-J., Barbier-Bryguo, H., and Laurierc, C., Different Phosphorylation Mechanism Are Involved in the Activation of Sucrose Non-Fermenting1 Related Protein Kinase 2 by Osmotic Stresses and Abscisic Acid, Plant Mol. Biol., 2007, vol. 63, pp. 491–503.PubMedCrossRefGoogle Scholar
  60. 60.
    Blom, N., Sicheritz-Ponten, P., Gupta, R., Gammerltolf, S., and Brunak, S., Prediction of Post-Translational Glycosylation and Phosphorylation of Proteins from the Amino Acid Sequence, Proteomics, 2004, vol. 4, pp. 1633–1649.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K., The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid ABA and Osmotic Stress Signals Controlling Stomatal Closure in Arabidopsis, J. Biol. Chem., 2006, vol. 281, pp. 5310–5318.PubMedCrossRefGoogle Scholar
  62. 62.
    Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K., Abscisic Acid-Dependent Multisite Phosphorylation Regulates the Activity of a Transcription Activator AREB1, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 1988–1993.PubMedCrossRefGoogle Scholar
  63. 63.
    Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T., Abscisic Acid-Activated SNRK2 Protein Kinases Function in the Gene-Regulation Pathway of ABA Signal Transduction by Phosphorylating ABA Response Element-Binding Factors, Plant J., 2005, vol. 44, pp. 939–949.PubMedCrossRefGoogle Scholar
  64. 64.
    Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., McCartney, R.R., Schmidt, M.C., Rachidi, N., Lee, S.-J., Mah, A.S., Meng, L., Stark, M.J.R., Stern, D.F., de Virgilio, C., Tyers, M., Andrews, B., Gerstein, M., Schweitzer, B., Predki, P.F., and Snyder, M., Global Analysis of Protein Phosphorylation in Yeast, Nature, 2005, vol. 438, pp. 679–684.PubMedCrossRefGoogle Scholar
  65. 65.
    Shin, R., Alvarez, S., Burch, A.Y., Jez, J.M., and Schachtman, D.P., Phosphoproteomic Identification of the Targets of the Arabidopsis Sucrose Nonfermenting-Like Kinase SnRK2.8 Reveals a Connection to Metabolic Processes, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 6460–6465.PubMedCrossRefGoogle Scholar
  66. 66.
    Knetsch, M.L.W., Wang, M., Snaar-Jagalska, B.E., and Heimovaara-Dijkstra, S., Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts, Plant Cell, 1996, vol. 8, pp. 1061–1067.PubMedCrossRefGoogle Scholar
  67. 67.
    Champion, A., Picaud, A., and Henry, Y., Reassessing the MAP3K and MAP4K Relationships, Trends Plant Sci., 2004, vol. 9, pp. 123–129.PubMedCrossRefGoogle Scholar
  68. 68.
    Jonak, C., Okresz, L., Bogre, L., and Hirt, H., Complexity, Cross Talk and Integration of Plant MAP Kinase Signaling, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 415–424.PubMedCrossRefGoogle Scholar
  69. 69.
    Burnett, E., Desikan, R., Moser, R., and Neill, S., ABA Activation of an MBP Kinase in Pisum sativum Epidermal Peels Correlates with Stomatal Responses to ABA, J. Exp. Bot., 2000, vol. 51, pp. 197–205.PubMedCrossRefGoogle Scholar
  70. 70.
    Bergmann, D.C., Lukowitz, W., and Somerville, C.R., Stomatal Development and Pattern Controlled by a MAPKK Kinase, Science, 2004, vol. 304, pp. 1494–1497.PubMedCrossRefGoogle Scholar
  71. 71.
    Lu, C., Han, M.-H., Guevara-Garcia, A., and Fedoroff, N.V., Mitogen-Activated Protein Kinase Signaling in Postgermination Arrest of Development by Abscisic Acid, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 15812–15817.PubMedCrossRefGoogle Scholar
  72. 72.
    Desikan, R., Cheung, M.K., Bright, J., Henson, D., Hancock, J.T., and Neill, S.J., ABA, Hydrogen Peroxide and Nitric Oxide Signaling in Stomatal Guard Cells, J. Exp. Bot., 2004, vol. 55, pp. 205–212.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang, A., Jiang, M., Zhang, J., Tan, M., and Hu, X., Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants, Plant Physiol., 2006, vol. 141, pp. 475–487.PubMedCrossRefGoogle Scholar
  74. 74.
    Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., Martienssen, R., Mattsson, O., Jensen, A.B., and Mundy, J., Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance, Cell, 2000, vol. 103, pp. 1111–1120.PubMedCrossRefGoogle Scholar
  75. 75.
    Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.-L., Gomes-Gomes, L., Boller, T., Ausubel, F.M., and Sheen, J., MAP Kinase Signaling Cascade in Arabidopsis Innate Immunity, Nature, 2002, vol. 415, pp. 977–983.PubMedCrossRefGoogle Scholar
  76. 76.
    Ahlfors, R., Macioszek, V., Rudd, J., Brosché, M., Schlichting, R., Scheel, D., and Kangasjárvi, J., Stress Hormone-Independent Activation and Nuclear Translocation of Mitogen-Activated Protein Kinases in Arabidopsis thaliana during Ozone Exposure, Plant J., 2004, vol. 40, pp. 512–522.PubMedCrossRefGoogle Scholar
  77. 77.
    Gudesblat, G.E., Iusem, N.D., and Morris, P.C., Guard Cell-Specific Inhibition of Arabidopsis MPK3 Expression Causes Abnormal Stomatal Responses to Abscisic Acid and Hydrogen Peroxide, New Phytol., 2007, vol. 173, pp. 713–721.PubMedCrossRefGoogle Scholar
  78. 78.
    Plesch, G., Ehrhardt, T., and Mueller-Roeber, B., Involvement of TAAAG Elements Suggests a Role for Dof Transcription Factors in Guard Cell-Specific Gene Expression, Plant J., 2001, vol. 28, pp. 455–464.PubMedCrossRefGoogle Scholar
  79. 79.
    Luan, S., Protein Phosphatases in Plants, Annu. Rev. Plant Biol., 2003, vol. 54, pp. 63–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Strack, S., Ruediger, R., Walter, G., Dagda, R.K., Barwacz, C.A., and Cribbs, J.T., Protein Phosphatase 2A Holoenzyme Assembly: Identification of Contacts between B-Family Regulatory and Scaffolding A Subunits, J. Biol. Chem., 2002, vol. 277, pp. 20 750–20 755.Google Scholar
  81. 81.
    Strack, S., Cribbs, J.T., and Gomez, L., Critical Role for Protein Phosphatase 2A Heterotrimers in Mammalian Cell Survival, J. Biol. Chem., 2004, vol. 279, pp. 47732–47739.PubMedCrossRefGoogle Scholar
  82. 82.
    Thelin, W.R., Kesimer, M., Tarran, R., Kreda, S.M., Grubb, B.R., Sheehan, J.K., Stutts, M.J., and Milgram, S.L., CFTR Is Regulated by a Direct Interaction with Protein Phosphatase PP2A, J. Biol. Chem., 2005, vol. 280, pp. 41512–41520.PubMedCrossRefGoogle Scholar
  83. 83.
    Deruere, J., Jackson, K., Garbers, C., Soll, D., and Delong, A., The RCN1-Encoded A Subunit of Protein Phosphatase 2A Increases Phosphatase Activity In Vivo, Plant J., 1999, vol. 20, pp. 389–399.PubMedCrossRefGoogle Scholar
  84. 84.
    Rashotte, A.M., Delong, A., and Muday, G.K., Genetic and Chemical Reduction in Protein Phosphatase Activity Alter Auxin Transport, Gravity Response and Lateral Root Growth, Plant Cell, 2001, vol. 13, pp. 1683–1697.PubMedCrossRefGoogle Scholar
  85. 85.
    Kwak, J.M., Moon, J.-H., Murata, Y., Kichitsu, K., Leonhardt, N., Delong, A., and Schroeder, J.I., Disruption of a Guard Cell-Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis, Plant Cell, 2002, vol. 14, pp. 2849–2861.PubMedCrossRefGoogle Scholar
  86. 86.
    Larsen, P.B. and Cancel, J.D., Enchanced Ethylene Responsiveness in the Arabidopsis eer1 Mutant Results from a Loss-of-Function Mutation in the Protein Phosphatase 2A Regulatory Subunit, RCN1, Plant J., 2003, vol. 34, pp. 709–718.PubMedCrossRefGoogle Scholar
  87. 87.
    Pernas, M., Garcia-Casado, G., Rojo, E., Solano, R., and Sanchez-Serrano, J.J., A Protein Phosphatase 2A Catalytic Subunit Is a Negative Regulator of Abscisic Acid Signaling, Plant J., 2007, vol. 51, pp. 763–778.PubMedCrossRefGoogle Scholar
  88. 88.
    Huijser, C., Kortstee, A., Pedo, J., Weisbeek, P., Wisman, E., and Smeckens, S., The Arabidopsis SUCROSE UNCOUPLED-G Gene Is Identical to ABSCISIC ACID INSENSITIVE-4: Involvement of Abscisic Acid in Sugar Responses, Plant J., 2000, vol. 23, pp. 577–585.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhu, J.-K., Salt and Drought Stress Signal Transduction in Plants, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 247–273.PubMedCrossRefGoogle Scholar
  90. 90.
    Xiong, L., Gong, Z., Rock, C.D., Subramanian, S., Guo, Y., Xu, W., Galbraith, D., and Zhu, J.-K., Modulation of Abscisic Acid Signal Transduction and Biosynthesis by an Sm-Like Protein in Arabidopsis, Dev. Cell, 2001, vol. 1, pp. 771–781.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D.T., McCourt, P., and Huang, Y., Molecular Tailoring of Farnesylation for Plant Drought Tolerance and Yield Protection, Plant J., 2005, vol. 43, pp. 413–424.PubMedCrossRefGoogle Scholar
  92. 92.
    Luo, J., Shen, G., Van, J., He, C., and Zhang, H., AtCHIP Functions as an E3 Ubiquitin Ligase of Protein Phosphatase 2A Subunits and Alters Plant Response to Abscisic Acid Treatment, Plant J., 2006, vol. 46, pp. 649–657.PubMedCrossRefGoogle Scholar
  93. 93.
    Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., and Waner, D., Guard Cell Signal Transduction, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 627–658.PubMedCrossRefGoogle Scholar
  94. 94.
    Merlot, S., Mustilli, A.-C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A., and Giraudat, J., Use of Infrared Thermal Imaging to Isolate Arabidopsis Mutants Defective in Stomatal Regulation, Plant J., 2002, vol. 30, pp. 601–609.PubMedCrossRefGoogle Scholar
  95. 95.
    Merlot, S., Leonhardt, N., Fenzi, F., Valon, C., Costa, M., Piette, L., Vavasseur, A., Genty, B., Boivin, K., Müller, A., Giraudat, J., and Leung, J., Constitutive Activation of a Plasma Membrane H+-ATPase Prevents Abscisic Acid-Mediated Stomatal Closure, EMBO J., 2007, vol. 26, pp. 3216–3226.PubMedCrossRefGoogle Scholar
  96. 96.
    Kinoshita, T. and Shimazaki, K., Biochemical Evidence for the Requirement of 14-3-3 Protein Binding in Activation of the Guard-Cell Plasma Membrane H+-ATPase by Blue Light, Plant Cell Physiol., 2002, vol. 43, pp. 1359–1365.PubMedCrossRefGoogle Scholar
  97. 97.
    Nühse, T.S., Sfensballe, A., Jensen, O.N., and Peck, S.C., Large-Scale Analyses of In Vivo Phosphorylated Membrane Proteins by Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry, Mol. Cell Proteom., 2003, vol. 2, pp. 1234–1243.CrossRefGoogle Scholar
  98. 98.
    Fuglsang, A.T., Tulinius, G., Cui, N., and Palmgren, M.G., Protein Phosphatase 2A Scaffolding Subunit A Interacts with Plasma Membrane H+-ATPase C-Terminus in the Same Region as 14-3-3 Protein, Physiol. Plant., 2006, vol. 128, pp. 334–340.CrossRefGoogle Scholar
  99. 99.
    Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, Plant Cell, 2003, vol. 15, pp. 63–78.PubMedCrossRefGoogle Scholar
  100. 100.
    Schweighofer, A., Hirt, H., and Meskiene, I., Plant PP2C Phosphatases: Emerging Functions in Stress Signaling, Trends Plant Sci., 2004, vol. 9, pp. 236–243.PubMedCrossRefGoogle Scholar
  101. 101.
    Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O., and Rodriguez, P.L., Gain-of-Function and Loss-of-Function Phenotypes of the Protein Phosphatase 2C HAB1 Reveal Its Role as a Negative Regulator of Abscisic Acid Signaling, Plant J., 2004, vol. 37, pp. 354–369.PubMedCrossRefGoogle Scholar
  102. 102.
    Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., and Hirayama, T., ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis PP2Cs, Plant Physiol., 2006, vol. 140, pp. 115–126.PubMedCrossRefGoogle Scholar
  103. 103.
    Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K., and Hirayama, T., ABA-Hypersensitive Germination1 Encodes a Protein Phosphatase 2C, an Essential Component of Abscisic Acid Signaling in Arabidopsis Seed, Plant J., 2007, vol. 50, pp. 935–949.PubMedCrossRefGoogle Scholar
  104. 104.
    Saez, A., Robert, N., Maktabi, M.H., Schroeder, J.I., Serrano, R., and Rodriguez, P.L., Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatase Type 2C ABI1 and HAB1, Plant Physiol., 2006, vol. 141, pp. 1389–1399.PubMedCrossRefGoogle Scholar
  105. 105.
    Himmelbach, A., Hoffmann, T., Leube, M., Hohener, B., and Grill, E., Homeodomain Protein ATHB6 Is a Target of the Protein Phosphatase ABI1 and Regulates Hormone Responses in Arabidopsis, EMBO J., 2002, vol. 21, pp. 3029–3038.PubMedCrossRefGoogle Scholar
  106. 106.
    Miao, Y., Lv, D., Wang, P., Wang, X.C., Chen, J., Miao, C., and Song, C.P., An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses, Plant Cell, 2006, vol. 18, pp. 2749–2766.PubMedCrossRefGoogle Scholar
  107. 107.
    Yang, Y., Sulpice, R., Himmelbach, A., Meinhard, M., Christmann, A., and Grill, E., Fibrillin Expression Is Regulated by Abscisic Acid Response Regulators and Is Involved in Abscisic Acid-Mediated Photoprotection, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 6061–6066.PubMedCrossRefGoogle Scholar
  108. 108.
    Mishra, G., Zhang, W., Deng, F., Zhao, J., and Wang, X., A Bifurcating Pathway Directs Abscisic Acid Effects on Stomatal Closure and Opening in Arabidopsis, Science, 2006, vol. 312, pp. 264–266.PubMedCrossRefGoogle Scholar
  109. 109.
    Zhang, W., Qin, C., Zhao, J., and Wang, X., Phospholipase Dα1-Derived Phosphatidic Acid Interacts with ABI1 Phosphatase 2C and Regulates Abscisic Acid Signaling, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 9508–9513.PubMedCrossRefGoogle Scholar
  110. 110.
    Gupta, R. and Luan, S., Redox Control of Protein Tyrosine Phosphatases and Mitogen-Activated Protein Kinases in Plants, Plant Physiol., 2003, vol. 132, pp. 1149–1152.PubMedCrossRefGoogle Scholar
  111. 111.
    Reyes, D., Rodriguez, D., Nicolas, G., and Nicolas, C., Evidence of a Role for Tyrosine Dephosphorylation in the Control of Postgermination Arrest of Development by Abscisic Acid in Arabidopsis thaliana, Planta, 2006, vol. 223, pp. 381–385.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • G. V. Novikova
    • 1
    Email author
  • N. S. Stepanchenko
    • 1
  • A. V. Nosov
    • 1
  • I. E. Moshkov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations