Skip to main content

Advertisement

Log in

Growth responses of Sagittaria sagittifolia L. plants to water contamination with cadmium

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cadmium accumulation, the relative content of different chemical forms of Cd, as well as the toxic effect of Cd on nutrient element uptake, physiological parameters, and ultrastructure of Sagittaria sagittifolia L. seedlings were determined after the seedlings were exposed to different Cd concentrations for 4 days. The results showed that S. sagittifolia had the ability to accumulate large amounts of Cd. In the root, stem, and bulb, the predominant chemical Cd forms were NaCl extractable. With an increase in the Cd2+ concentration, the chlorophyll content, the relative membrane penetrability (RMP) of root cells, peroxidase (POD) activity, superoxide dismutase (SOD) activity in leaves, malondiadehyde (MDA) content and the superoxide anion (O 2 ) generation rate in roots all decreased following an initial increase. On the other hand, catalase (CAT) activity, SOD activity in roots, MDA content, and the generation rate of O 2 in leaves all increased gradually. The toxic effect of Cd2+ was more severe on roots than on leaves at the same concentration. Cadmium affected the mineral nutrition balance; mainly, it promoted the uptake of Ca, Cu, Mn, and Fe, while inhibited Mg, Na, and K uptake. The physiological toxic effect of Cd2+ was close to the ultrastructural damage induced by Cd contamination. A significant correspondence was observed between the Cd dose and its toxic effect. Cadmium could destroy the normal ultrastructure, disturb the ion balance, and interfere with cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CAT:

catalase

MDA:

malondiadehyde

POD:

peroxidase

RMP:

relative membrane penetrability

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TEM:

transmission electron microscope

References

  1. Lunáčková, L., Masarovičová, E., Král’ová, K., and Streško, V., Response of Fast Growing Woody Plants from Family Salicaceae to Cadmium Treatment, Bull. Environ. Contam. Toxicol., 2003, vol. 70, pp. 576–585.

    Article  PubMed  Google Scholar 

  2. Rai, U.N., Tripathi, R.D., Vajpayee, P., Pandey, N., Ali, M.B., and Gupta, D.K., Cadmium Accumulation and Its Phytotoxicity in Potamogeton pectinatus L. (Potamogetonaceae), Bull. Environ. Contam. Toxicol., 2003, vol. 70, pp. 566–575.

    Article  PubMed  CAS  Google Scholar 

  3. Guilizzoni, P., The Role of Heavy Metals and Toxic Materials in the Physiological Ecology of Submerged Macrophytes, Aquat. Bot., 1991, vol. 41, pp. 87–110.

    Article  CAS  Google Scholar 

  4. Sinha, S., Gupta, M., and Chandra, P., Bioaccumulation and Toxicity of Cu and Cd in Vallisneria spiralis (L.), Environ. Monit. Assess., 1994, vol. 33, pp. 75–84.

    Article  CAS  Google Scholar 

  5. Vajpayee, P., Rai, U.N., Ali, M.B., Tripathi, R.D., Yadav, V., Sinha, S., and Singh, S.N., Chromium-Induced Physiologic Changes in Vallisneria spiralis L. and Its Role in Phytoremediation of Tannery Effluent, Bull. Environ. Contam. Toxicol., 2001, vol. 67, pp. 246–256.

    PubMed  CAS  Google Scholar 

  6. Sinha, S., Saxena, R., and Singh, S., Comparative Studies on Accumulation of Cr from Metal Solution and Tannery Effluent under Repeated Metal Exposure by Aquatic Plants: Its Toxic Effects, Environ. Monit. Assess., 2002, vol. 80, pp. 17–31.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, Q.S., Shi, G.X., and Hao, H.Q., Effects of Cd, Cr: Single and Combined Pollution on Chlorophyll Content and Antioxidant Enzyme Systems of Potamogeton crispus Linn., Guihaia, 2001, vol. 21, pp. 87–90.

    Google Scholar 

  8. Oyanagui, Y., Reevaluation of Assay Methods and Establishment of Kit for Superoxide Dismutase Activity, Anal. Biochem., 1984, vol. 142, pp. 290–296.

    Article  PubMed  CAS  Google Scholar 

  9. Maehly, A.C., Plant Peroxidase, Methods Enzymol., 1955, vol. 2, pp. 801–813.

    Article  Google Scholar 

  10. Wu, G.R., Lu, C.M., Tao, M.X., Zhou, C.F., Gu, G.P., and Wei, J.C., Enhancement of Spirulina subsalsa Tolerance to Pb by Pretreatment of Paraquat and H2O2, J. Lake Sci., 2000, vol. 12, pp. 240–246.

    Google Scholar 

  11. Hu, J.Z., Shi, G.X., Xu, Q.S., Wang, X., Yuan, Q.H., and Du, K.H., Effects of Pb2+ on the Active Oxygen-Scavenging Enzyme Activities and Ultrastructure in Potamogeton crispus Leaves, Russ. J. Plant Physiol., 2007, vol. 54, pp. 414–419.

    Article  CAS  Google Scholar 

  12. Zhang, X.L., Shi, G.X., Xu, Q.S., Gu, W., Zhong, H.W., Zeng, X.M., and Xu, N., Detoxication of Lanthanum against Nickel in Hydrocharis dubia BL. Backer Leaves, J. Rare Earths, 2003, vol. 21, pp. 81–84.

    Google Scholar 

  13. Xu, J.L., Bao, Z.P., Yang, J.R., Liu, H., and Song, W.C., Chemical Forms of Pb, Cd and Cu in Crops, Chin. J. Appl. Ecol., 1991, vol. 2, pp. 244–248.

    Google Scholar 

  14. Rai, U.N., Tripathi, R.D., Sinha, S., and Chandra, P., Chromium and Cadmium Bioaccumulation and Toxicity in Hydrilla verticillata (l. f.) Royle and Chara corallina Wildenow, J. Environ. Sci. Health, Part-A, 1995, vol. 30, pp. 537–551.

    Article  Google Scholar 

  15. Sinha, S., Gupta, M., and Chandra, P., Oxidative Stress Induced by Iron in Hydrilla verticillata (l. f.) Royle: Response of Antioxidants, Ecotoxicol. Environ. Saf., 1997, vol. 38, pp. 286–291.

    Article  PubMed  CAS  Google Scholar 

  16. Gupta, M., Sinha, S., and Chandra, P., Copper-Induced Toxicity in Aquatic Macrophyte, Hydrilla verticillata: Effect of pH, Ecotoxicology, 1996, vol. 5, pp. 23–33.

    Article  CAS  Google Scholar 

  17. Van Assche, F. and Clijsters, H., Effects of Metal on Enzyme Activity in Plants, Plant, Cell Environ., 1990, vol. 13, pp. 195–206.

    Article  Google Scholar 

  18. Stobart, A.K., Griffiths, W.T., Ameen-Bukhari, I., and Sherwood, R.P., The Effects of Cadmium Ion on the Biosynthesis of Chlorophyll in Leaves of Barley Hordeum vulgare Cultivar Proctor, Physiol. Plant., 1985, vol. 63, pp. 293–298.

    Article  CAS  Google Scholar 

  19. Trebst, A., Energy Conservation in Photosynthetic Electron Transport of Chloroplasts, Annu. Rev. Plant Physiol., 1974, vol. 25, pp. 423–458.

    Article  CAS  Google Scholar 

  20. Shi, G.X., Du, K.H., Xie, K.B., Ding, X.Y., Chang, F.C., and Chen, G.X., Ultrastructural Study of Leaf Cells Damaged from Hg2+ and Cd2+ Pollution in Hydrilla verticillata, Acta Bot. Sinica, 2000, vol. 42, pp. 373–378.

    CAS  Google Scholar 

  21. Scandalios, J.G., Oxygen Stress and Superoxide Dismutases, Plant Physiol., 1993, vol. 101, pp. 7–12.

    PubMed  CAS  Google Scholar 

  22. Gaspar, T., Penel, C., Castillo, F.J., and Greppin, H., A Two Step Control of Basic and Acidic Peroxidases and Its Significance for Growth and Development, Plant Physiol., 1985, vol. 64, pp. 418–423.

    Article  CAS  Google Scholar 

  23. Patra, J., Lenka, M., and Panda, B.B., Tolerance and Co-Tolerance of the Grass Chloris barbata Sw. to Mercury, Cadmium and Zinc, New Phytol., 1994, vol. 128, pp. 165–171.

    Article  CAS  Google Scholar 

  24. Vera-Estrella, R., Higgins, V.J., and Blumwald, E., Plant Defense Response to Fungal Pathogens: G-Protein Mediated Changes in Host Plasma Membrane Redox Reactions, Plant Physiol., 1994, vol. 106, pp. 97–102.

    PubMed  CAS  Google Scholar 

  25. Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Kumar, A., Singh, N., Behl, H.M., and Singh, S.P., Mercury Bioaccumulation Induces Oxidative Stress and Toxicity to Submerged Macrophyte Potamogeton crispus L., Bull. Environ. Contam. Toxicol., 2000, vol. 65, pp. 573–582.

    Article  PubMed  CAS  Google Scholar 

  26. Abdelilah, C., Brahim, J., and Ezzedine, E.L.F., Effects of Cadmium and Copper on Peroxidase, NADH Oxidase and IAA Oxidase Activities in Cell Wall, Soluble and Microsomal Membrane Fractions of Pea Roots, J. Plant Physiol., 2004, vol. 161, pp. 1225–1234.

    Article  Google Scholar 

  27. Andrews, F., Bjorksten, J., Trenk, F.B., Henick, A.S., and Koch, R.B., The Reaction of an Auto Oxidized Lipids with Proteins, J. Am. Oil Chem. Soc., 1965, vol. 42, pp. 779–781.

    Article  PubMed  CAS  Google Scholar 

  28. Larsson, E., Bornman, J., and Asp, H., Influence of UV-B Radiation and Cd2+ on Chlorophyll Fluorescence, Growth and Nutrient Content in Brassica napus, J. Exp. Bot., 1998, vol. 49, pp. 1031–1039.

    Article  CAS  Google Scholar 

  29. Meharg, A.A., The Role of the Plasmalemma in Metal Tolerance in Angiosperms, Physiol. Plant., 1993, vol. 88, pp. 191–198.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to J. Z. Hu.

Additional information

Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 5, pp. 759–767.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J.Z., Pei, D.L., Liang, F. et al. Growth responses of Sagittaria sagittifolia L. plants to water contamination with cadmium. Russ J Plant Physiol 56, 686–694 (2009). https://doi.org/10.1134/S102144370905015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144370905015X

Key words