Skip to main content
Log in

Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cadmium is known to reduce photosynthesis and overall growth of plants. Plants adopt several mechanisms of Cd detoxification, such as accumulation of sulfur-rich compounds, like glutathione (GSH) and its precursor cysteine. The accumulation of GSH is regulated by the activity of ATP-sulfurylase, a rate-limiting enzyme in sulfur assimilation. The carbon of Cys is provided through photosynthesis. Thus, a plant with the higher photosynthetic potential and ATP-sulfurylase activity may have the higher contents of Cys and GSH and therefore may provide for a greater tolerance to Cd stress. Mustard (Brassica juncea L. Czern and Coss.) cvs. Varuna (high photosynthetic potential) and RH30 (low photosynthetic potential) were subjected to 0 and 200 mg Cd/kg soil, and the activity of ATP-sulfurylase, the contents of Cys and GSH, oxidative stress, and activities of antioxidant enzymes were studied. Under 200 mg Cd/kg soil, cv. Varuna showed an increased ATP-sulfurylase activity, the higher contents of Cys and GSH, and the net photosynthetic rate than cv. RH30. In contrast, the activity of superoxide dismutase, the contents of thiobarbituric acid-reactive substances, and H2O2, and electrolyte leakage were found to be greater in cv. RH30 showing an increased oxidative stress than cv. Varuna. However, the activities of ascorbate peroxidase and glutathione reductase were greater in cv. Varuna than cv. RH30. The results show that a greater ATP-sulfurylase activity, an enhanced production of Cys and GSH, and an efficient antioxidant enzyme system in the high photosynthetic mustard cv. Varuna helped to the reduce the oxidative stress maintaing high photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

APX:

ascorbate peroxidase

Cd:

cadmium

DAS:

days after sowing

GR:

glutathione reductase

g s :

stomatal conductance

GSH:

glutathione reduced

C i :

intercellular CO2 concentration

P N :

net photosynthetic rate

PCs:

phytochelatins

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid-reactive substances

References

  1. Wagner, G., Accumulation of Cadmium in Crop Plants and Its Consequences to Human Health, Adv. Agron., 1993, vol. 51, pp. 173–211.

    Article  CAS  Google Scholar 

  2. Dong, J., Wu, F., and Zhang, G., Effect of Cadmium on Growth and Photosynthesis of Tomato Seedlings, J. Zhejiang Univ. Sci. B, 2005, vol. 6, pp. 974–980.

    Article  PubMed  CAS  Google Scholar 

  3. Astolfi, S., Zuchi, S., and Passera, C., Role of Sulfur Availability on Cadmium-Induced Changes of Nitrogen and Sulfur Metabolism in Maize (Zea mays L.) Leaves, J. Plant Physiol., 2004, vol. 161, pp. 795–802.

    Article  PubMed  CAS  Google Scholar 

  4. Van Assche, F. and Clijsters, H., Effects of Metals on Enzyme Activity in Plants, Plant, Cell Environ., 1990, vol. 13, pp. 195–206.

    Article  Google Scholar 

  5. Takeda, T., Yokota, Y., and Shigeoka, S., Resistance of Photosynthesis to Hydrogen Peroxide in Algae, Plant Cell Physiol., 1995, vol. 36, pp. 1084–1095.

    Google Scholar 

  6. Sanita di Toppi, L. and Gabbrielli, R., Response to Cadmium in Higher Plants, Environ. Exp. Bot., 1999, vol. 41, pp. 105–130.

    Article  Google Scholar 

  7. Mobin, M. and Khan, N.A., Photosynthetic Activity, Pigment Composition and Antioxidative Response of Two Mustard (Brassica juncea) Cultivars Differing in Photosynthetic Capacity Subjected to Cadmium Stress, J. Plant Physiol., 2007, vol. 164, pp. 601–610.

    Article  PubMed  CAS  Google Scholar 

  8. Somashekaraiah, B.V., Padmaja, K., and Prasad, A.R.K., Phytotoxicity of Cadmium Ions on Germinating Seedlings of Mung Bean (Phaseolus vulgaris): Involvement of Lipid Peroxides in Chlorophyll Degradation, Physiol. Plant., 1992, vol. 85, pp. 85–89.

    Article  CAS  Google Scholar 

  9. Hsu, Y.T. and Kao, C.H., Cadmium Induced Oxidative Damage in Rice Leaves Is Reduced by Polyamines, Plant Soil, 2007, vol. 291, pp. 27–37.

    Article  CAS  Google Scholar 

  10. Dixit, V., Pandey, V., and Shyam, R., Differential Oxidative Responses to Cadmium in Roots and Leaves of Pea (Pisum sativum L., cv. Azad), J. Exp. Bot., 2001, vol. 52, pp. 1101–1109.

    Article  PubMed  CAS  Google Scholar 

  11. Qadir, S., Qureshi, M.I., Javed, S., and Abdin, M.Z., Genotypic Variation in Phytoremediation Potential of Brassica juncea Cultivars Exposed to Cd Stress, Plant Sci., 2004, vol. 167, pp. 1171–1181.

    Article  CAS  Google Scholar 

  12. Singh, S., Khan, N.A., Nazar, R., and Anjum, N.A., Photosynthetic Traits and Activities of Antioxidant Enzymes in Blackgram (Vigna mungo L. Hepper) under Cadmium Stress, Am. J. Plant Physiol., 2008, vol. 1, pp. 25–32.

    Google Scholar 

  13. Chen, L.M., Lin, C.C., and Kao, C.H., Copper Toxicity in Rice Seedlings: Changes in Antioxidative Enzyme Activities, H2O2 Level, and Cell Wall Peroxidase Activity in Roots, Bot. Bull. Acad. Sinica, 2000, vol. 41, pp. 99–103.

    CAS  Google Scholar 

  14. Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., and del Rio, L.A., Cadmium-Induced Changes in the Growth and Oxidative Metabolism of Pea Plants, J. Exp. Bot., 2001, vol. 52, pp. 2115–2126.

    PubMed  CAS  Google Scholar 

  15. Schutzendubel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Godbold, D.L., and Polle, A., Cadmium-Induced Changes in Antioxidant Systems, Hydrogen Peroxide Content and Differentiation in Scots Pine Roots, Plant Physiol., 2001, vol. 127, pp. 887–898.

    Article  PubMed  CAS  Google Scholar 

  16. Anjum, N.A., Umar, S., Ahmad, A., Iqbal, M., and Khan, N.A., Ontogenic Variation in Response of Brassica campestris L. to Cadmium Toxicity, J. Plant Int., 2008, DOI: 10.1080/17429140701823164.

  17. Cobbett, C.S. and Goldsbrough, P., Phytochelatins and Metalothioneins: Roles in Heavy Metal Detoxification and Homeostasis, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 159–182.

    Article  PubMed  CAS  Google Scholar 

  18. Hell, R. and Rennenberg, H., The Plant Sulphur Cycle, Sulphur in Agroecosystems, Ed. Schnug, E., Dordrecht: Kluwer, 1998, pp. 135–137.

    Google Scholar 

  19. Khan, N.A., Activity of 1-Aminocyclopropane Carboxylic Acid Synthase in Two Mustard (Brassica juncea L.) Cultivars Differing in Photosynthetic Capacity, Photosynthetica, 2004, vol. 42, pp. 477–480.

    Article  CAS  Google Scholar 

  20. Lappartient, A.G. and Touraine, B., Demand-Driven Control of Root ATP-Sulfurylase Activity and S Uptake in Intact Canola, Plant Physiol., 1996, vol. 111, pp. 147–157.

    PubMed  CAS  Google Scholar 

  21. Giatonde, M.K., A Spectrophotometric Method for the Direct Determination of Cysteine in the Presence of Other Naturally Occurring Amino Acids, Biochem. J., 1967, vol. 104, pp. 627–633.

    Google Scholar 

  22. Anderson, M.E., Determination of Glutathione and Glutathione Disulfides in Biological Samples, Methods Enzymol., 1985, vol. 113, pp. 548–570.

    Article  PubMed  CAS  Google Scholar 

  23. Giannopolitis, C.N. and Ries, S.K., Superoxide Dismutases: I. Occurrence in Higher Plants, Plant Physiol., 1977, vol. 59, pp. 307–314.

    Google Scholar 

  24. Nakano, Y. and Asada, K., Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  25. Sgherri, C.L.M., Loggini, B., Pulinga, S., and Navari-Izzo, F., Antioxidant Defense System in Sporobolus stapfianus: Changes in Response to Desiccation and Rehydration, Phytochemistry, 1994, vol. 33, pp. 561–565.

    Article  Google Scholar 

  26. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  27. Cakmak, I. and Horst, J., Effect of Aluminum on Lipid Peroxidation, Supereoxide Dismutase, Catalase, Peroxidase Activities in Root Tips of Soybean (Glycine max), Physiol. Plant., 1991, vol. 83, pp. 463–468.

    Article  CAS  Google Scholar 

  28. Okuda, T., Masuda, Y., Yamanka, A., and Sagisaka, S., Abrupt Increase in the Level of Hydrogen Peroxide in Leaves of Winter Wheat Is Caused by Cold Treatment, Plant Physiol., 1991, vol. 97, pp. 1265–1267.

    Article  PubMed  CAS  Google Scholar 

  29. Dominguez-Solis, J.R., Lopez-Martin, M.C., Ager, M.C., Ynsa, M.D., Romero, L.C., and Gotor, C., Increased Cysteine Availability Is Essential for Cadmium Tolerance and Accumulation in Arabidopsis thaliana, Plant Biotechnol. J., 2004, vol. 2, pp. 469–476.

    CAS  Google Scholar 

  30. Hardiman, R.T. and Jacoby, B., Absorption and Translocation of Cd in Bush Beans, Physiol. Plant., 1984, vol. 61, pp. 470–474.

    Article  Google Scholar 

  31. Khan, N.A., Samiullah, Singh, S., and Nazar, R., Activities of Antioxidative Enzymes, Sulfur Assimilation, Photosynthetic Activity and Growth of Wheat (Triticum aestivum) Cultivars Differing in Yield Potential under Cadmium Stress, J. Agron. Crop Sci., 2007, vol. 193, pp. 435–444.

    Article  CAS  Google Scholar 

  32. Horst, W.J., The Role of Apoplast in Aluminium Toxicity and Resistance of Higher Plants: A Review, Z. Pflanzenernaehr. Bodenkd., 1995, vol. 158, pp. 418–428.

    Article  Google Scholar 

  33. Marchiol, L., Leita, L., Martin, M., and Peressotti, Z.G., Physiological Response of Two Soybean Cultivars to Cadmium, J. Environ. Qual., 1996, vol. 25, pp. 562–566.

    Article  CAS  Google Scholar 

  34. Romero-Puertas, M.C., Palma, J.M., Gomez, M., del Rio, L.A., and Sandalio, L.M., Cadmium Causes the Oxidative Modification of Proteins in Pea Plants, Plant, Cell Environ., 2002, vol. 25, pp. 677–686.

    Article  CAS  Google Scholar 

  35. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford: Clarendon Press, 1989.

    Google Scholar 

  36. Xiang, C. and Oliver, D.J., Glutathione Metabolic Genes Coordinately Respond to Heavy Metals and Jasmonic Acid in Arabidopsis, Plant Cell, 1998, vol. 10, pp. 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  37. Mishra, S., Srivastava, S., Tripathy, R.D., Govindaranjan, R., Kuriakose, S.V., and Prasad, M.N.V., Phytochelatin Synthesis and Response of Antioxidants during Cadmium Stress in Bacopa monieri L., Plant Physiol. Biochem., 2006, vol. 44, pp. 25–37.

    Article  PubMed  CAS  Google Scholar 

  38. Cobbett, C.S., Phytochelatins and Their Roles in Heavy Metal Detoxification, Plant Physiol., 2000, vol. 123, pp. 825–832.

    Article  PubMed  CAS  Google Scholar 

  39. Noctor, G., Strohm, M., Jouanin, I., Kunert, K.J., Foyer, C.H., and Rennenberg, H., Synthesis of Glutathione in Leaves of Transgenic Poplar Overexpressing γ-Glutamylcysteine Synthase, Plant Physiol., 1996, vol. 112, pp. 1071–1078.

    PubMed  CAS  Google Scholar 

  40. Rauser, W.E., Phytochelatins, Annu. Rev. Biochem., 1995, vol. 59, pp. 61–86.

    Article  Google Scholar 

  41. Arisi, A.C., Noctor, G., Foyer, C.H., and Jouanin, L., Modification of Thiol Contents in Poplars (Populus tremula × P. alba) Overexpressing Enzymes Involved in Glutathione Synthesis, Planta, 1997, vol. 203, pp. 362–372.

    Article  PubMed  CAS  Google Scholar 

  42. Heiss, S., Schafer, H.J., Haag-Kerwer, A., and Rausch, T., Cloning Sulfur Assimilation Genes of Brassica juncea L.: Cadmium Differentially Affects the Expression of a Putative Low Affinity Sulfate Transporter and Isoforms of ATP-Sulfurylase and APS Reductase, Plant Mol. Biol., 1999, vol. 39, pp. 847–857.

    Article  PubMed  CAS  Google Scholar 

  43. Tripathi, R.D., Rai, U.N., Gupta, M., and Chandra, P., Induction of Phytochelatins in Hydrilla verticilata (l.f.) Royle under Cadmium Stress, Bull. Environ. Contam. Toxicol., 1996, vol. 56, pp. 505–512.

    Article  PubMed  CAS  Google Scholar 

  44. Ernst, W.H.O., Krauss, G.-J., Verleij, J.A.C., and Wesenberg, D., Interaction of Heavy Metals with Sulphur Metabolism in Angiosperms from an Ecological Point of View, Plant, Cell Environ., 2008, vol. 31, pp. 123–143.

    CAS  Google Scholar 

  45. Sun, X.M., Lu, B., Huang, S.Q., Mehta, S.K., Xu, L.L., and Yang, Z.M., Coordinated Expression of Sulfate Transporters and Its Relation with Sulfur Metabolites in Brassica napus Exposed to Cadmium, Bot. Stud., 2007, vol. 48, pp. 43–54.

    CAS  Google Scholar 

  46. Anjum, N.A., Umar, S., Ahmad, A., Iqbal, M., and Khan, N.A., Sulphur Protects Mustard (Brassica campestris L.) from Cadmium Toxicity by Improving Leaf Ascorbate and Glutathione, Plant Growth Regul., 2008, vol. 54, pp. 271–279.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Khan.

Additional information

Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 5, pp. 743–750.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N.A., Anjum, N.A., Nazar, R. et al. Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russ J Plant Physiol 56, 670–677 (2009). https://doi.org/10.1134/S1021443709050136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443709050136

Key words