Russian Journal of Plant Physiology

, Volume 56, Issue 2, pp 147–153 | Cite as

Interaction between ethylene and ABA in the regulation of polyamine level in Arabidopsis thaliana during UV-B stress

  • V. Yu. RakitinEmail author
  • O. N. Prudnikova
  • T. Ya. Rakitina
  • V. V. Karyagin
  • P. V. Vlasov
  • G. V. Novikova
  • I. E. Moshkov
Research Papers


The effects of treatment with ethylene (0.01–100 μl/l) on ABA and polyamine contents and treatment with ABA on ethylene synthesis, polyamines content, and the resistance to UV-B radiation of two-week-old Arabidopsis thaliana (L.) Heynh, Columbia ecotype plants grown u⊋er sterile conditions were studied. Ethylene stimulated the accumulation of polyamines only at concentrations of 0.1–10 μl/l, which could activate ABA synthesis. Treatment with ABA (50–5000 μM, 1 μl per plant) decreased the UV-B-induced ethylene synthesis and a spermine and spermidine loss, increasing the content of putrescine, the precursor of these polyamines. ABA inhibited fresh weight accumulation in irradiated and nonirradiated plants but prevented them from severe damage and death at the high (18 kJ/m2) and lethal (27 kJ/m2) UV-B dose, respectively. The data obtained demonstrated a mutual regulation of ethylene and ABA syntheses and the participation of these hormones in the control of the polyamine level during adaptation of A. thaliana to UV-B stress.

Key words

Arabidopsis thaliana UV-B ethylene ABA putrescine spermidine spermine 









Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rakitina, T.Ya., Vlasov, P.V., and Rakitin, V.Yu., Hormonal Aspects of Different Resistance of Arabidopsis thaliana Mutants to Ultraviolet Radiation, Russ. J. Plant Physiol., 2001, vol. 48, pp. 353–358.CrossRefGoogle Scholar
  2. 2.
    Schwartz, S.H., Qin, X., and Zeevaart, J.A.D., Elucidation of the Indirect Pathway of Abscisic Acid Biosynthesis by Mutants, Genes, and Enzymes, Plant Physiol., 2003, vol. 131, pp. 1591–1601.PubMedCrossRefGoogle Scholar
  3. 3.
    Rakitina, T.Ya., Rakitin, V.Yu., Vlasov, P.V., and Prudnikova, O.N., Effect of ABA on the UV-B-Induced Ethylene Evolution by the etr and ctr Mutants of Arabidopsis thaliana, Russ. J. Plant Physiol., 2004, vol. 51, pp. 663–667.Google Scholar
  4. 4.
    Rosado, A., Amaya, I., Valpuesta, V., Cuartero, J., Botella, M.A., and Borsani, O., ABA- and Ethylene-Mediated Responses in Osmotically Stressed Tomato Are Regulated by the TSS2 and TOS1 Loci, J. Exp. Bot., 2006, vol. 57, pp. 3327–3335.PubMedCrossRefGoogle Scholar
  5. 5.
    Rakitin, V.Yu., Prudnikova, O.N., Karyagin, V.V., Rakitina, T.Ya., Vlasov, P.V., Borisova, T.A., Novikova, G.V., and Moshkov, I.E., Ethylene Evolution and ABA and Polyamine Contents in Arabidopsis thaliana during UV-B Stress, Russ. J. Plant Physiol., 2008, vol. 55, pp. 321–327.CrossRefGoogle Scholar
  6. 6.
    Gazzarrini, S. and McCourt, P., Cross-Talk in Plant Hormone Signalling: What Arabidopsis Mutants Are Telling Us, Ann. Bot., 2003, vol. 91, pp. 605–612.PubMedCrossRefGoogle Scholar
  7. 7.
    Beadoin, N., Serizet, C., Gosti, F., and Giraudat, J., Interactions between Abscisic Acid and Ethylene Signaling Cascades, Plant Cell, 2000, vol. 12, pp. 1103–1115.CrossRefGoogle Scholar
  8. 8.
    Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., and McCourt, P., Regulation of Abscisic Acid Signaling by the Ethylene Response Pathway in Arabidopsis, Plant Cell, 2000, vol. 12, pp. 1117–1126.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, T.M., Lur, H.S., Shieh, Y.J., and Chu, C., Levels of Abscisic Acid in Anoxia- or Ethylene-Treated Rice (Oryza sativa L.) Seedlings, Plant Sci., 1994, vol. 95, pp. 125–131.CrossRefGoogle Scholar
  10. 10.
    Kraft, M., Kuglitsch, R., Kwiatkowski, J., Frank, M., and Grossmann, K., Indole-3-Acetic Acid and Auxin Herbicides Up-Regulate 9-cis-Epoxycarotenoid Dioxygenase Gene Expression and Abscisic Acid Accumulation in Cleavers (Galium aparine): Interaction with Ethylene, J. Exp. Bot., 2007, vol. 58, pp. 1497–1503.PubMedCrossRefGoogle Scholar
  11. 11.
    Benschop, J.J., Jackson, M.B., Guhl, K., Vreeburg, R.A., Croker, S.J., Peeters, A.J., and Voesenek, L.A., Contrasting Interactions between Ethylene and Abscisic Acid in Rumex Species Differing in Submergence Tolerance, Plant J., 2005, vol. 44, pp. 756–768.PubMedCrossRefGoogle Scholar
  12. 12.
    Saika, H., Okamoto, M., Miyoshi, K., Kushiro, T., Shinoda, S., Jikumaru, Y., Fujimoto, M., Arikawa, T., Takahashi, H., Ando, M., Arimura, S., Miyao, A., Hirochika, H., Kamiya, Y., Tsutsumi, N., Nambara, E., and Nakazono, M., Ethylene Promotes Submergence-Induced Expression of OsABA8ox1, a Gene That Encodes ABA 8’-Hydrolase in Rice, Plant Cell Physiol., 2007, vol. 48, pp. 287–298.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, N.N., Shih, M.C., and Li, N., The GUS Reporter-Aided Analysis of the Promoter Activities of Arabidopsis ACC Synthase Genes AtACS4, AtACS5, and AtACS7 Induced by Hormones and Stresses, J. Exp. Bot., 2005, vol. 56, pp. 909–920.PubMedCrossRefGoogle Scholar
  14. 14.
    Rakitina, T.Ya., Vlasov, P.V., Zhalilova, F.Kh., and Kefeli, V.I., Abscisic Acid and Ethylene in Mutants of Arabidopsis thaliana Differing in Their Resistance to Ultraviolet (UV-B) Radiation Stress, Russ. J. Plant Physiol., 1994, vol. 41, pp. 599–603.Google Scholar
  15. 15.
    Chow, B. and McCourt, P., Hormone Signaling from Developmental Context, J. Exp. Biol., 2004, vol. 55, pp. 247–251.Google Scholar
  16. 16.
    Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines and Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.CrossRefGoogle Scholar
  17. 17.
    Rhee, H.J., Kim, E.J., and Lee, J.K., Physiological Polyamines: Simple Primordial Stress Molecules, J. Cell Mol. Med., 2007, vol. 11, pp. 685–703.PubMedCrossRefGoogle Scholar
  18. 18.
    Groppa, M.D. and Benavides, M.P., Polyamines and Abiotic Stress: Recent Advances, Amino Acids, 2008, vol. 34, pp. 35–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith, J., Burrit, D., and Bannister, P., Ultraviolet-B Radiation Leads to a Reduction in Free Polyamines in Phaseolus vulgaris L., Plant Growth Regul., 2001, vol. 35, pp. 289–294.CrossRefGoogle Scholar
  20. 20.
    An, L.Z., Liu, G.X., Zhang, M.X., Chen, T., Liu, Y.H., Feng, H.Y., Xu, S.J., Qiang, W.Y., and Wang, X.L., Effect of Enhanced UV-B Radiation on Polyamine Content and Membrane Permeability in Cucumber Leaves, Russ. J. Plant Physiol., 2004, vol. 51, pp. 658–662.CrossRefGoogle Scholar
  21. 21.
    Lutz, C., Navakoudis, E., Seidlitz, H.K., and Kotzabasis, K., Simulated Solar Irradiation with Enhanced UV-B adjust Plastid- and Thylakoid-Associated Polyamine Changes for UV-B Protection, Biochim. Biophys. Acta, 2005, vol. 1710, pp. 24–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin, W., Wu, X., Liang, K., Guo, Y., He, H., Chen, F., and Liang, Y., Effect of Enhanced UV-B Radiation on Polyamine Metabolism and Endogenous Hormone Contents in Rice (Oryza sativa L.), Ying yong Shengtai xue bao, 2002, vol. 13, pp. 807–813.Google Scholar
  23. 23.
    Veleminsky, J. and Gichner, T., Sterile Culture of Arabidopsis on Agar Medium, Arabidopsis Information Service, vol. 1, Kranz, A.R., Ed., Frankfurt/Main: J.W. Goethe-Univ., 1964, pp. 34–35.Google Scholar
  24. 24.
    Rakitin, V.Yu. and Rakitin, L.Yu., Determination of Gas Exchange and Ethylene, Carbon Dioxide, and Oxygen Contents in Plant Tissues, Sov. Plant Physiol., 1986, vol. 33, pp. 403–413.Google Scholar
  25. 25.
    Flores, H.E. and Galston, A.W., Analysis of Polyamines in Higher Plants by High Performance Liquid Chromatography, Plant Physiol., 1982, vol. 69, pp. 701–706.PubMedCrossRefGoogle Scholar
  26. 26.
    Abeles, F., Morgan, P., and Salveit, J., Ethylene in Plant Biology, San Diego: Academic, 1992.Google Scholar
  27. 27.
    Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan, K., Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 3460–3479.PubMedCrossRefGoogle Scholar
  28. 28.
    Xiong, L., Shumaker, K.S., and Zhu, J.K., Cell Signaling during Cold, Drought and Salt Stresses, Plant Cell, 2002, vol. 14, pp. S165–S183.PubMedCrossRefGoogle Scholar
  29. 29.
    Bray, E.A., Abscisic Acid Regulation of Gene Expression during Water-Deficit Stress in the ERA of the Arabidopsis Genome, Plant Cell Environ., 2002, vol. 25, pp. 153–161.PubMedCrossRefGoogle Scholar
  30. 30.
    Finkelstein, R.R., Gampala, S.S., and Rock, C.D., Abscisic Acid Signaling in Seeds and Seedlings, Plant Cell, 2002, vol. 14, pp. S15–S45.PubMedGoogle Scholar
  31. 31.
    Kim, T.E., Kim, S.-K., Han, T.J., Lee, J.S., and Chang, S.C., ABA and Polyamines Act Independently in Primary Leaves of Cold-Stressed Tomato (Lycopersicon esculentum), Physiol. Plant., 2002, vol. 115, pp. 370–376.PubMedCrossRefGoogle Scholar
  32. 32.
    Bregoli, A.M., Scaramagli, S., Costa, G., Sabatini, E., Ziosi, V., Biondi, S., and Torrigiani, P., Peach (Prunus persica) Fruit Ripening: Aminoethoxyvinylglycine (AVG) and Exogenous Polyamines Affect Ethylene Emission and Flesh Firmness, Physiol. Plant., 2002, vol. 114, pp. 472–481.PubMedCrossRefGoogle Scholar
  33. 33.
    Bouchereau, A., Aziz, A., Larher, F., and Martin-Tanguy, J., Polyamines and Environmental Challenges: Recent Development, Plant Sci., 1999, vol. 140, pp. 103–125.CrossRefGoogle Scholar
  34. 34.
    Martin-Tanguy, J., Metabolism and Function of Polyamines in Plants: Recent Development (New Approaches), Plant Growth Regul., 2001, vol. 34, pp. 135–148.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. Yu. Rakitin
    • 1
    Email author
  • O. N. Prudnikova
    • 1
  • T. Ya. Rakitina
    • 1
  • V. V. Karyagin
    • 1
  • P. V. Vlasov
    • 1
  • G. V. Novikova
    • 1
  • I. E. Moshkov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations