Skip to main content
Log in

Physiological responses of Populus przewalskii to oxidative burst caused by drought stress

  • Reserch Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We measured dry matter accumulation and allocation to the roots, leaf gas exchange, chlorophyll fluorescence, antioxidant enzymes, and ABA and polyamine (PA) contents in Populus przewalskii under three different watering regimes (100, 50, and 25% of the field capacity) to investigate the morphological and physiological responses to water deficit in woody plants. The results showed that drought stress retarded P. przewalskii as evident from a decreased biomass accumulation and the reduced increment of shoot height and basal diameter. Drought stress also affected the biomass partition by higher biomass allocated to the root systems for water uptake. The contents of ABA and PAs especially were increased under stressful conditions. Drought stress caused oxidative burst indicated by the accumulation of peroxide (H2O2), and fluorimetric detection also confirmed the increased accumulation of H2O2. The antioxidant enzymes, including superoxide dimutase, peroxidase, ascorbate peroxidase, and reductase, were activated to bring the reactive oxygen species to their homeostasis; however, oxidative damages to lipids, proteins, and membranes were significantly manifested by the increase in total carbonyl (C=O) and electric conductance (EC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

DAB:

3,3′-diaminobenzidine

EC:

electric conductance

FC:

field capacity

GR:

glutathione reductase

MDA:

malondialdehyde

NBT:

nitro blue tetrazolium

PA:

polyamine

PSII:

photosystem II

POD:

peroxidase

Put:

putrescine

ROS:

reactive oxygen species

RWC:

relative water content

SOD:

dimutase

Spd:

spermidine

Spm:

spermine

WUE:

water use efficiency

References

  1. Kronfub, G., Polle, A., Tausz, M., Havranek, W.M., and Wieser, G., Effects of Ozone and Mild Drought Stress on Gas Exchange, Antioxidants and Chloroplast Pigments in Current-Year Needles of Young Norway Spruce (Picea abies (L.), Karst.), Trees, 1998, vol. 12, pp. 482–489.

    Google Scholar 

  2. Yin, C., Peng, Y., Zang, R., Zhu, Y., and Li, C., Adaptive Responses of Populus kangdingensis to Drought Stress, Physiol. Plant., 2005, vol. 123, pp. 445–451.

    Article  CAS  Google Scholar 

  3. Jones, H.G., Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, Cambridge: Cambridge Univ. Press, 1992.

    Google Scholar 

  4. Rouhi, V., Samson, R., Lemeur, R., and Damme, P.V., Photosynthetic Gas Exchange Characteristics in Three Different Almond Species during Drought Stress and Subsequent Recovery, Environ. Exp. Bot., 2007, vol. 59, pp. 117–129.

    Article  CAS  Google Scholar 

  5. Asada, K., The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 601–639.

    Article  PubMed  CAS  Google Scholar 

  6. Beligni, M.V. and Lamattina, L., Nitric Oxide Counteracts Cytotoxic Processes Mediated by Reactive Oxygen Species in Plant Tissues, Planta, 1999, vol. 208, pp. 337–344.

    Article  CAS  Google Scholar 

  7. Guo, Z., Ou, W., Lu, S., and Zhong, Q., Differential Responses of Antioxidative System to Chilling and Drought Stress in Four Rice Cultivars, Plant Physiol. Biochem., 2006, vol. 44, pp. 828–836.

    Article  PubMed  CAS  Google Scholar 

  8. Nayar, H. and Gupta, D., Differential Sensitivity of C3 and C4 Plants to Water Deficit Stress: Association with Oxidative Stress and Antioxidants, Environ. Exp. Bot., 2006, vol. 58, pp. 106–113.

    Article  CAS  Google Scholar 

  9. Alfredo, A., Alves, C., and Tim, L.S., Abscisic Acid Accumulation and Osmotic Adjustment in Cassava under Water Deficit, Environ. Exp. Bot., 2004, vol. 51, pp. 259–271.

    Article  CAS  Google Scholar 

  10. Li, C., Puhakainen, T., Welling, A., Vihera-Aarnio, A., Ernstsen, A., Junttila, O., Heino, P., and Palva, E.T., Cold Acclimation in Silver Birch (Betula pendula). Development of Freezing Tolerance in Different Tissues and Climatic Ecotypes, Physiol. Plant., 2002, vol. 116, pp. 478–488.

    Article  CAS  Google Scholar 

  11. Jiang, M. and Zhang, J., Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings, Plant Cell Physiol., 2001, vol. 42, pp. 1265–1273.

    Article  PubMed  CAS  Google Scholar 

  12. Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., and Watkins, C.B., Influence of Salicylic Acid on H2O2 Production, Oxidative Stress, and H2O2-Metabolizing Enzymes (Salicylic Acid-Mediated Oxidative Damage Requires H2O2), Plant Physiol., 1997, vol. 115, pp. 137–149.

    Article  PubMed  CAS  Google Scholar 

  13. Hare, P.D., Cress, W.A., and van Staden, J., Dissecting the Roles of Osmolyte Accumulation during Stress, Plant Cell Environ., 1998, vol. 21, pp. 535–553.

    Article  CAS  Google Scholar 

  14. Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A.J., and Kusano, T., A Protective Role for the Polyamine Spermine against Drought Stress in Arabidopsis, Biochem. Biophys. Res. Commun., 2007, vol. 352, pp. 486–490.

    Article  PubMed  CAS  Google Scholar 

  15. Perry, C.H., Miller, R.C., Brooks, K.N., Brooks, R.T., and Lust, N., Impact of Short-Rotation Hybrid Poplar Plantations on Regional Water Yield, For. Ecol. Manag., 2001, vol. 143, pp. 143–151.

    Article  Google Scholar 

  16. Tschaplinski, T.J., Tuskan, G.A., and Gunderson, C.A., Water-Stress Tolerance of Black and Eastern Cottonwood Clones and Four Hybrid Progeny. I. Growth, Water Relations and Gas Exchange, Can. J. For. Res., 1994, vol. 24, pp. 364–371.

    Article  Google Scholar 

  17. Li, C., Yin, C., and Liu, S., Different Responses of Two Contrasting Populus davidiana Populations to Exogenous Abscisic Acid Application, Environ. Exp. Bot., 2004, vol. 51, pp. 237–246.

    Article  CAS  Google Scholar 

  18. Xiong, Y., Xing, G., Li, F., Wang, S., Fan, X., Li, Z., and Wang, Y., Abscisic Acid Promotes Accumulation of Toxin ODAP in Relation to Free Spermine Level in Grass Pea Seedlings (Lathyrus sativus L.), Plant Physiol. Biochem., 2006, vol. 44, pp. 161–169.

    Article  PubMed  CAS  Google Scholar 

  19. Flores, H.E. and Galston, A.W., Analysis of Polyamines in Higher Plants by High Performance Liquid Chromatography, Plant Physiol., 1982, vol. 69, pp. 701–706.

    PubMed  CAS  Google Scholar 

  20. Schreiber, U., Bilger, W., and Neubauer, C., Chlorophyll Florescens as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis, Ecophysiology of Photosynthesis, Ecological Studies, Schulze, E.D. and Caldwell, M.M., Eds., Berlin: Springer-Verlag, 1994, pp. 49–70.

    Google Scholar 

  21. Brennan, T. and Frekel, C., Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear, Plant Physiol., 1977, vol. 59, pp. 411–416.

    PubMed  CAS  Google Scholar 

  22. Gong, M., Li, Y., and Chen, S., Abscisic Acid-Induced Thermo Tolerance in Maize Seedlings Is Mediated by Calcium and Associated with Antioxidant Systems, J. Plant Physiol., 1998, vol. 153, pp. 488–496.

    CAS  Google Scholar 

  23. Hodges, D.M., DeLong, J.M., Forney, C.F., and Prange, R.K., Improving the Thiobarbituric Acid-Reactive Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds, Planta, 1999, vol. 207, pp. 604–611.

    Article  CAS  Google Scholar 

  24. Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechillo, S., Klucas, R.V., and Aparicio-Tejo, P., Drought Induces Oxidative Stress in Pea Plants, Planta, 1994, vol. 194, pp. 346–352.

    Article  CAS  Google Scholar 

  25. Levine, R.L., Willians, J.A., Stadtman, E.R., and Shacter, E., Carbonyl Assays for Determination of Oxidatively Modified Proteins, Methods Enzymol., 1994, vol. 233, pp. 346–363.

    Article  PubMed  CAS  Google Scholar 

  26. Turner, J.G. and Nobacky, A., The Quantitative Relationship between Plant and Bacterial Cells Involved in the Hypersensitive Reaction, Phytopathology, 1974, vol. 64, pp. 885–890.

    Google Scholar 

  27. Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gomez, M., Del Rio, L.A., and Sandalio, L.M., Cadmium-Induced Subcellular Accumulation of O2 and H2O2 in Pea Leaves, Plant Cell Environ., 2004, vol. 27, pp. 1122–1134.

    Article  CAS  Google Scholar 

  28. Zhang, X., Zhang, L., Dong, F., Galbraith, D.W., and Song, C., Hydrogen Peroxide Is Involved in Abscisic Acid-Induced Stomatal Closure in Vicia faba, Plant Physiol., 2001, vol. 126, pp. 1438–1448.

    Article  PubMed  CAS  Google Scholar 

  29. Giannopolitis, C.N. and Ries, S.K., Superoxide Dismutase in Higher Plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  PubMed  CAS  Google Scholar 

  30. Lin, J. and Wang, G., Doubled CO2 Could Improve the Drought Tolerance Better in Sensitive Cultivars than in Tolerant Cultivars in Spring Wheat, Plant Sci., 2002, vol. 163, pp. 627–637.

    Article  CAS  Google Scholar 

  31. Nakano, Y. and Asada, K., Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  32. Scaramagli, S., Biondi, S., Lenoe, A., Grub, S., and Torrigiani, P., Acclimation to Low-Water Potential in Potato Cell Suspension Cultures Leads to Changes in Putrescine Metabolism, Plant Physiol. Biochem., 2000, vol. 38, pp. 345–351.

    Article  CAS  Google Scholar 

  33. Bradford, M.M., A Rapid and Sensitive Method for Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  34. Sharp, R.E., Comparative Sensitivity of Root and Shoot Growth and Physiology to Low Water Potentials, Importance of Root-to-Shoot Communication in the Response to Environmental Stress, Davies, W.J. and Jeffcoat, B., Eds., Bristol: British Society for Plant Growth Regulation, 1990, pp. 29–44.

    Google Scholar 

  35. Xu, Z. and Zhou, G., Nitrogen Metabolism and Photosynthesis in Leymus chinensis in Response to Long-Term Soil Drought, J. Plant Growth Regul., 2006, vol. 25, pp. 252–266.

    Article  CAS  Google Scholar 

  36. Lissner, J., Schierup, H.H., Comn, F.A., and Astorga, V., Effect of Climate on the Salt Tolerance of Two Phragmites australis Populations. I. Growth, Inorganic Solutes, Nitrogen Relations and Osmoregulation, Aquat. Bot., 1999, vol. 64, pp. 317–333.

    Article  CAS  Google Scholar 

  37. Masia, A., Physiological Effects of Oxidative Stress in Relatian to Ethylene in Postharvest Produce, Postharvest Oxidative Stress in Horticultural Crops, Hodges, D.M., Ed., New York: Food Products Press, 2003, pp. 165–197.

    Google Scholar 

  38. Marnett, L.J., Lipid Peroxidation-DNA Damage by Malondialdehyde, Mutat. Res., 1999, vol. 424, pp. 83–95.

    PubMed  CAS  Google Scholar 

  39. Pacifici, R.E. and Davies, K.J.A., Protein Degradation as an Index of Oxidative Stress, Methods Enzymol., 1990, vol. 186, pp. 485–502.

    Article  PubMed  CAS  Google Scholar 

  40. Zhu, J., Hasegawa, P.M., and Bressan, R.A., Molecular Aspects of Osmotic Stress in Plants, Crit. Rev. Plant Sci., 1997, vol. 16, pp. 253–277.

    Article  CAS  Google Scholar 

  41. Imai, R., Moses, M.S., and Bray, E.A., Expression of an ABA-Induced Gene of Tomato in Transgenic Tobacco during Periods of Water Deficit, J. Exp. Bot., 1995, vol. 46, pp. 1077–1084.

    Article  CAS  Google Scholar 

  42. Liu, H., Dong, B., Zhang, Y., Liu, Z., and Liu, Y., Relationship between Osmotic Stress and the Levels of Free, Conjugated and Bound Polyamines in Leaves of Wheat Seedlings, Plant Sci., 2004, vol. 166, pp. 1261–1267.

    Article  CAS  Google Scholar 

  43. Makabuka, R. and Wu, R., Arginine Decarboxylase Transgene Expression and Analysis of Environmental Stress Tolerance in Transgenic Rice, Plant Sci., 2001, vol. 160, pp. 869–875.

    Article  Google Scholar 

  44. Bouchereau, A., Aziz, A., Larther, F., and Martin-Tanguy, J., Polyamines and Environmental Challenges: Recent Development, Plant Sci., 1999, vol. 140, pp. 103–125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lei.

Additional information

Original Russian Text © Y. Lei, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 6, pp. 945–953.

This text was presented by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y. Physiological responses of Populus przewalskii to oxidative burst caused by drought stress. Russ J Plant Physiol 55, 857–864 (2008). https://doi.org/10.1134/S1021443708060186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708060186

Key words

Navigation