Skip to main content
Log in

The vacuolar symplast: Does it really exist in plants? (Comments on Publications of G.A. Velikanov et al. in Russian Journal of Plant Physiology)

  • Letters to Editor
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Velikanov, G.A., Volobueva, O.V., and Khokhlova, L.P., The Study of the Hydraulic Conductivity of the Plasmodesmal Transport Channels by the Pulse NMR Method, Russ. J. Plant Physiol., 2001, vol. 48, pp. 318–325.

    Article  CAS  Google Scholar 

  2. Velikanov, G.A., Volobueva, O.V., Belova, L.P., and Gaponenko, E.M., Vacuolar Symplast as a Regulated Pathway for Water Flows in Plants, Russ. J. Plant Physiol., 2005, vol. 52, pp. 326–331.

    Article  CAS  Google Scholar 

  3. Velikanov, G.A. and Belova, L.P., Regulation of Water Permeability of Vacuolar Symplast, Russ. J. Plant Physiol., 2005, vol. 52, pp. 758–764.

    Article  CAS  Google Scholar 

  4. Velikanov, G.A., Vacuolar Symplast and Methodological Approach to Monitoring Water Self-Diffusion between Vacuoles of Contacting Root Cells, Russ. J. Plant Physiol., 2007, vol. 54, pp. 683–692.

    Article  CAS  Google Scholar 

  5. Gamalei, Yu.V., Supercellular Plant Organization, Russ. J. Plant Physiol., 1997, vol. 44, pp. 706–730.

    CAS  Google Scholar 

  6. Gamalei, Yu.V., Plant Vacuome, Usp. Sovrem. Biol., 2006, vol. 126, pp. 348–365.

    Google Scholar 

  7. Gamalei, Yu.V., The Role of Mesophyll Cell Tonoplast in Determining the Route of Phloem Loading. Thirty Years of the Studies of Phloem Loading, Russ. J. Plant Physiol., 2007, vol. 54, pp. 1–9.

    Article  CAS  Google Scholar 

  8. Roberts, A.G. and Oparka, K.J., Plasmodesmata and the Control of Symplastic Transport, Plant, Cell Environ., 2003, vol. 26, pp. 103–124.

    Article  Google Scholar 

  9. Cleland, R.E., Fujiwara, T., and Lucas, W.J., Plasmodesmata-Mediated Cell-to-Cell Transport in Wheat Roots Is Modulated by Anaerobic Stress, Protoplasma, 1994, vol. 178, pp. 81–85.

    Article  PubMed  CAS  Google Scholar 

  10. Wright, K.M. and Oparka, K.J., Metabolic Inhibitors Induce Symplastic Movement of Solutes from the Transport Phloem of Arabidopsis Roots, J. Exp. Bot., 1997, vol. 48, pp. 1807–1814.

    CAS  Google Scholar 

  11. Kuo, S.Y., Chien, L.F., van Ru, C., Yan, K.H., Liu, P.F., Chang, W.C., Wang, J.K., and Pan, R.L., Purification and Subunit Determination of H+-Pyrophosphatase from Endoplasmic Reticulum-Enriched Vesicles of Mung Bean Seedlings, Plant Sci., 2005, vol. 169, pp. 847–853.

    Article  CAS  Google Scholar 

  12. Kuo, S.Y., Chien, L.F., Hsiao, Y.Y., van Ru, C., Yan, K.H., Liu, P.F., Mao, S.J., and Pan, R.L., Proton Pumping Inorganic Pyrophosphatase of Endoplasmic Reticulum-Enriched Vesicles from Etiolated Mung Bean Seedlings, J. Plant Physiol., 2005, vol. 162, pp. 129–138.

    Article  PubMed  CAS  Google Scholar 

  13. Wright, K.M. and Oparka, K.J., The ER within Plasmodesmata, The Plant Endoplasmic Reticulum, Plant Cell, vol. 4, Robinson, D.G., Ed., Berlin: Springer-Verlag, 2006, pp. 279–307.

    Chapter  Google Scholar 

  14. Fricke, W., Water Movement between Epidermal Cells of Barley Leaves — a Symplastic Connection? Plant, Cell Environ., 2000, vol. 23, pp. 991–997.

    Article  Google Scholar 

  15. Barbour, M.M. and Farquhar, G.D., Do Pathways of Water Movement and Leaf Anatomical Dimensions Allow Development of Gradients in H2 18O between Veins and the Sites of Evaporation within Leaves? Plant, Cell Environ., 2003, vol. 27, pp. 107–121.

    Article  Google Scholar 

  16. Epimashko, S., Meckel, T., Fisher-Schliebs, E., Luttge, U., and Thiel, G., Two Functionally Different Vacuoles for Static and Dynamic Purposes in One Plant Mesophyll Leaf Cell, Plant J., 2004, vol. 37, p. 300.

    Google Scholar 

  17. Martinoia, E., Maeshima, M., and Neuhaus, H.E., Vacuolar Transporters and Their Essential Role in Plant Metabolism, J. Exp. Bot., 2007, vol. 58, pp. 83–102.

    Article  PubMed  CAS  Google Scholar 

  18. Cole, L., Orlovich, D.A., and Ashford, A.E., Structure, Function and Motility of Vacuoles in Filamentous Fungi, Fungal Genet. Biol., 1998, vol. 24, pp. 86–100.

    Article  PubMed  Google Scholar 

  19. Darrah, P.R., Tlalka, M., Ashford, A., Watkinson, S.C., and Fricker, M.D., The Vacuolar System Is a Significant Pathway for Longitudinal Solute Transport in Basidiomycete Fungi, Eukaryotic Cell, 2006, vol. 5, pp. 1111–1125.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Andreev.

Additional information

Original Russian Text © I.M. Andreev, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 6, pp. 931–933.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, I.M. The vacuolar symplast: Does it really exist in plants? (Comments on Publications of G.A. Velikanov et al. in Russian Journal of Plant Physiology). Russ J Plant Physiol 55, 843–845 (2008). https://doi.org/10.1134/S1021443708060150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708060150

Keywords

Navigation