Russian Journal of Plant Physiology

, Volume 55, Issue 6, pp 738–747 | Cite as

Influence of Bt-plants on soil biota and pleiotropic effect of δ-endotoxin-encoding genes

Reviews

Abstract

The critical review of experimental conclusions stating environmental safety of transgenic plants reveals that the methods and test materials employed in some studies were inadequate to the goals pursued. A large-scale application of transgenic Bt-plants may result in long-lasting negative impact on the environment. First, the cultivation of these plants leads to accumulation of Bt-toxins in soil. Second, the decomposition of transgenic plants takes significantly longer time compared to that of isogenic lines. Third, the biological activity of soils under transgenic crops is lower than in the control plots. The transfer of δ-endotoxin-encoding genes to the genome of agricultural crops affects simultaneously several entirely different traits of genetically modified plants, thus exerting pleiotropic effects. This gives rise to a paradoxical situation: the genetically engineered crops selected on the trait of resistance to herbivorous insects of the order Lepidoptera become more attractive for herbivores from the other order, Homoptera.

Key words

Bt plants effects on environment pleitropic effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saxena, D. and Stotzky, G., Release of Larvicidal Cry Proteins in Root Exudates of Transgenic Bt Plants, ISB News Rep., February 2005, pp. 1–3.Google Scholar
  2. 2.
    James, C., Global Status of Commercialized Biotech/GM Crops: 2004, ISAA, 2004, no. 32, p. 12.Google Scholar
  3. 3.
    James, C., Executive summary, brief 37, Global Status of Commercialized Biotech/GM Crops: 2007, http://www.isaaa.org/resources/publications/briefs/37/executivesummary/pdf.
  4. 4.
    Kuznetsov, Vl.V. and Kulikov, A.M., Genetically-Modified Organisms and Their Products: Real and Potential Risks, Zh. Ros. Khim. Ob-va im. D.I. Mendeleeva, 2005, vol. 49, pp. 70–83.Google Scholar
  5. 5.
    Viktorov, A.G., Bt-Plants and Biological Activity of Soils, Agrokhimiya, 2007, no. 2, pp. 83–88.Google Scholar
  6. 6.
    Icoz, I. and Stotzky, G., Fate and Effects of Insect Resistant Bt-Crops in Soil Ecosystems, Soil Biol. Biochem., 2008, vol. 40, pp. 559–586.CrossRefGoogle Scholar
  7. 7.
    Adamczyk, J.J. and Sumerford, D.V., Potential Factors Impacting Season-Long Expression of Cry1Ac in 13 Commercial Varieties of Bollgard Cotton, J. Insect Sci., 2001, vol. 1, pp. 1–13.Google Scholar
  8. 8.
    Adamczyk, J.J., Jr, Hardee, D.D., Adams, L.C., and Sumerford, D.V., Correlating Differences in Larval Survival and Development of Bollworms (Lepidoptera: Gelechiidae) and Fall Armyworms (Lepidoptera: Noctuidae) to Differential Expression of Cry1Ac(c). Endotoxin in Various Plant Parts among Commercial Cultivars of Transgenic Bacillus thuringiensis Cotton, J. Econ. Entomol., 2001, vol. 94, pp. 284–290.PubMedCrossRefGoogle Scholar
  9. 9.
    Greenplate, J.T., Quantification of Bacillus thuringiensis Insect Control Protein Cry1Ac over Time in Bollgard Cotton Fruit and Terminals, J. Econ. Entomol., 1999, vol. 92, pp. 1377–1383.Google Scholar
  10. 10.
    Wan, P., Zhang, Y., Wu, K., and Huang, M., Seasonal Expression Profiles of Insecticidal Protein and Control Efficacy against Helicoverpa armigera for Bt Cotton in the Yangtze River Valley of China, J. Econ. Entomol., 2005, vol. 98, pp. 195–201.PubMedGoogle Scholar
  11. 11.
    Kranthi, K.R., Naidu, S., Dhawad, C.S., Tatwawadi, A., Mate, K., Patil, E., Bharose, A.A., Behere, G.T., Wadaskar, R.M., and Kranthi, S., Temporal and Intra-Plant Variability of Cry1Ac Expression in Bt-Cotton and Its Influence on the Survival of the Cotton Bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera), Curr. Sci., 2005, vol. 89, pp. 291–299.Google Scholar
  12. 12.
    US Environmental Protection Agency (EPA). Bacillus thuringiensis Plant-Pesticides. Biopesticides Registration Action Document-Insect Resistance Management, Environmental Protection Agency, Washington, DC, 2000, http://www.epa/gov/oscpmont/sap/2000/october/brad4+AF8-irm.pdf.
  13. 13.
    Coviella, C.E., Stipanovic, R.D., and Trumble, J.T., Plant Allocation to Defensive Compounds: Interactions between Elevated CO2 and Nitrogen in Transgenic Cotton Plants, J. Exp. Bot., 2002, vol. 53, pp. 323–331.PubMedCrossRefGoogle Scholar
  14. 14.
    Pettigrew, W.T. and Adamczyk, J.J., Nitrogen Fertility and Planting Date Effects on Lint Yield and Cryl Ac (Bt) Endotoxin Production, Agron. J., 2006, vol. 98, pp. 691–697.CrossRefGoogle Scholar
  15. 15.
    Chen, D., Ye, G., Yang, C., Chen, Y., and Wu, Y., The Effect of High Temperature on the Insecticidal Proper ties of Bt Cotton, Environ. Exp. Bot., 2005, vol. 53, pp. 333–340.CrossRefGoogle Scholar
  16. 16.
    Benedict, J.H., Sachs, E.S., Altman, D.W., Deaton, W.R., Kohel, R.J., and Berberich, S.A., Field Performance of Cottons Expressing Transgenic Cry1A Insecticidal Proteins for Resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae), J. Econ. Entomol., 1996, vol. 89, pp. 230–238.Google Scholar
  17. 17.
    Jiang, L., Duan, L., Tian, X., Wang, B., Zhang, H., and Li, Z., NaCl Salinity Stress Decreased Bacillus thuringiensis (Bt) Protein Content of Transgenic Bt Cotton (Gossypium hirsutum L.) Seedlings, Environ. Exp. Bot., 2006, vol. 55, pp. 315–320.CrossRefGoogle Scholar
  18. 18.
    Viktorov, A.G., Aphids and Bt-Plants, Zashch. Rast. (Moscow), 2008, no. 4, pp. 16–17.Google Scholar
  19. 19.
    Zwahlen, C., Hilbeck, A., Gugerli, P., and Nentwig, W., Degradation of the Cry1Ab Protein within Transgenic Bacillus thuringiensis Corn Tissue in the Field, Mol. Ecol., 2003, vol. 12, pp. 765–775.PubMedCrossRefGoogle Scholar
  20. 20.
    Sims, S.R. and Holden, L.R., Insect Bioassay for Determining Soil Degradation of Bacillus thuringiensis subsp. Kurstaki CryIA(B) Protein in Corn Tissue, Environ. Entomol., 1996, vol. 25, pp. 659–664.Google Scholar
  21. 21.
    Saxena, D., Flores, S., and Stotzky, G., Bt Toxin Is Released in Root Exudates from 12 Transgenic Corn Hybrids Representing Three Transformation Events, Soil Biol. Biochem., 2002, vol. 34, pp. 133–137.CrossRefGoogle Scholar
  22. 22.
    Pagel-Wiedera, S., Niemeyera, J., Fischerb, W.R., and Gesslera, F., Effects of Physical and Chemical Properties of Soils on Adsorption of the Insecticidal Protein (Cry1Ab) from Bacillus thuringiensis at Cry1Ab Protein Concentrations Relevant for Experimental Field Sites, Soil Biol. Biochem., 2007, vol. 39, pp. 3034–3042.CrossRefGoogle Scholar
  23. 23.
    Cortet, J., Griffithsc, B.S., Bohanecd, M., Demsard, D., Andersene, M.N., Caulc, S., Birchc, A.N.E., Perninb, C., Tabonef, E., de Vaufleuryg, A., Keh, X., and Kroghi, P.H., Evaluation of Effects of Transgenic Bt Maize on Microarthropods in a European Multi-Site Experiment, Pedobiologia, 2007, vol. 51, pp. 207–218.CrossRefGoogle Scholar
  24. 24.
    Baumgarte, S. and Christoph, C.T., Field Studies on the Environmental Fate of the Cry1Ab Bt-Toxin Produced by Transgenic Maize (MON810) and Its Effect on Bacterial Communities in the Maize Rhizosphere, Mol. Ecol., 2005, vol. 14, pp. 2539–2551.PubMedCrossRefGoogle Scholar
  25. 25.
    Wandeler, H., Bahylova, J., and Nentwig, W., Consumption of Two Bt and Six Non-Bt Corn Varieties by the Woodlouse Porcellio scaber, Basic Appl. Ecol., 2002, vol. 3, pp. 357–365.CrossRefGoogle Scholar
  26. 26.
    Bakonyi, G., Szira, F., Kiss, I., Villanyi, I., Seres, A., and Szekacs, A., Preference Tests with Collembolas on Isogenic and Bt-Maize, Eur. J. Soil Biol., 2006, vol. 42, pp. 132–135.CrossRefGoogle Scholar
  27. 27.
    Zwahlen, C., Hilbeck, A., and Nentwig, W., Field Decomposition of Transgenic Bt Maize Residue and the Impact on Non-Target Soil Invertebrates, Plant Soil, 2007, vol. 300, pp. 245–257.CrossRefGoogle Scholar
  28. 28.
    Saxena, D. and Stotzky, G., Bt Corn Has a Higher Lignin Content than Non-Bt Corn, Am. J. Bot., 2001, vol. 88, pp. 1704–1706.CrossRefGoogle Scholar
  29. 29.
    Poerschmann, J., Gathmann, A., Augustin, J., Langer, U., and Gorecki, T., Molecular Composition of Leaves and Stems of Genetically Modified Bt and Near-Isogenic Non-Bt Maize — Characterization of Lignin Patterns, J. Environ. Qual., 2005, vol. 34, pp. 1508–1518.PubMedCrossRefGoogle Scholar
  30. 30.
    Flores, S., Saxena, D., and Stotzky, G., Transgenic Bt Plants Decompose Less in Soil Than Non-Bt Plants, Soil Biol. Biochem., 2005, vol. 37, pp. 1073–1082.CrossRefGoogle Scholar
  31. 31.
    Lee, K.E., Earthworms. Their Ecology and Relationships. with Soil and Land Use, Sydney: Academic, 1985.Google Scholar
  32. 32.
    Wheatley, G.A. and Hardman, J.A., Insecticides and Chlorinated Hydrocarbons and Organic Phosphorus Compounds and Residues in Soil and Water, Carrots and Earthworms, Rep. Natl. Veg. Res. Stat., 1964, vol. 15, pp. 63–65.Google Scholar
  33. 33.
    Ireland, M.P., Heavy Metal Uptake and Tissue Distribution in Earthworms, Earthworm Ecology (from Darwin to Vermiculture), Satchell, J.E., Ed., London: Chapman and Hall, 1983, pp. 247–265.Google Scholar
  34. 34.
    Krivolutzkii, D.A., Pokarzhevsky, A.D., and Viktorov, A.G., Earthworm Populations in Soils Contaminated by the Chernobyl Atomic Power Station Accident, 1986–1988, Soil Biol. Biochem., 1992, vol. 24, pp. 1729–1731.CrossRefGoogle Scholar
  35. 35.
    Garrec, J.P. and Plebin, R., Accumulation du luor dans les vers de terre vivant das des sol contamines, Environ. Pollut. Ser. B, 1984, vol. 7, pp. 97–105.CrossRefGoogle Scholar
  36. 36.
    Kreis, B., Edwards, P., Cuendet, G., and Tarradellas, J., The Dynamics of PCB between Earthworm Population and Agricultural Soils, Pedobiologia, 1987, vol. 30, pp. 379–388.Google Scholar
  37. 37.
    Marquenie, J.M. and Simmers, J.W., A Method to Asses Potential Bioavailability of Contaminants, Earthworms in Waste and Environmental Management, Edwards, C.A. and Neuhauser, E.F., Eds., The Hague: SPB Academic, 1988, pp. 367–376.Google Scholar
  38. 38.
    Kuperman, R., Acidic Deposition, Soil Invertebrates, Decomposition and Nutrient Dynamics on Oak-Hickory Forests of the Ohio Corridor Pollution Gradient, Air Pollutants and Forest Response. The Ohio Corridor Study, Loucks, O.L., Ed., Indinopolis, Indiana: Hollcomb Res. Inst., Working Paper no. 134, 1990, pp. 296–306.Google Scholar
  39. 39.
    Edwards, C.A. and Bohlen, P.J., The Effects of Toxic Chemicals on Earthworms, Review of Environmental Contamination and Toxicology, vol. 125, New York: Springer-Verlag, 1992, pp. 23–99.Google Scholar
  40. 40.
    Viktorov, A.G., Diversity of Polyploid Races in the Family Lumbricidae, Soil Biol. Biochem., 1997, vol. 29, no. 3/4, pp. 217–221.CrossRefGoogle Scholar
  41. 41.
    Smirnoff, W.A. and Heimpel, A.M., Notes on the Pathogenicity of Bacillus thuringiensis var. thuringiensis Berliner for the Earthworm, Lumbricus terrestris Linnaeus, J. Insect Pathol., 1961, vol. 3, pp. 403–408.Google Scholar
  42. 42.
    Addison, J.A. and Holmes, S.B., Effect of Two Commercial Formulations of Bacillus thuringiensis subsp. Kurstaki on the Forest Earthworm Dendrobaena octaedra, Can. J. For. Res., 1996, vol. 26, pp. 1594–1601.CrossRefGoogle Scholar
  43. 43.
    Ahl Goy, P., Warren, G., White, J., Privalle, L., and Fearing, P., Interaction of An Insect Tolerant Maize with Organisms in the Ecosystem//Proc. Key Biosafety Aspects of Genetically Modified Organisms, 10–11 April, 1995 (Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft, vol. 309), Berlin: Berlin-Dahlem, Blackwell, 1995, pp. 50–53.Google Scholar
  44. 44.
    Saxena, D. and Stotzky, G., Bacillus thuringiensis (Bt) Toxin Released from Root Exudates and Biomass of Bt Corn Has No Apparent Effect on Earthworms, Nematodes, Protozoa, Bacteria, and Fungi in Soil, Soil Biol. Biochem., 2001, vol. 33, pp. 1225–1230.CrossRefGoogle Scholar
  45. 45.
    Zwahlen, C., Hilbeck, A., Howald, R., and Nentwig, W., Effects of Transgenic Bt Corn Litter on the Earthworm Lumbricus terrestris, Mol. Ecol., 2003, vol. 12, pp. 1077–1086.PubMedCrossRefGoogle Scholar
  46. 46.
    Vercesi, M.L., Krogh, P.H., and Holmstrup, M., Can Bacillus thuringiensis (Bt) Corn Residues and Bt-Corn Plants Affect Life-History Traits in the Earthworm Aporrectodea caliginosa? Appl. Soil Ecol., 2006, vol. 32, pp. 180–187.CrossRefGoogle Scholar
  47. 47.
    Roper, T.J., The European Badger Meles meles: Food Specialist or Generalist? J. Zool. (London), 1994, vol. 234, pp. 437–452.Google Scholar
  48. 48.
    Liu, X., Zhang, Q., Zhao, J., Cai, Q., Xu, H., and Li, J., Effect of the Cry1Ac Toxin of Bacillus thuringiensis on Microplitis mediator, a Parasitoid of the Cotton Bollworm, Helicoverpa armigera, Entomol. Exp. Appl., 2005, vol. 114, pp. 205–213.CrossRefGoogle Scholar
  49. 49.
    Lumbierres, B., Albajes, R., and Pons, X., Transgenic Bt-Maize and Rhopalosiphum padi (Hom., Aphididae) Performance, Ecol. Entomol., 2004, vol. 29, pp. 309–317.CrossRefGoogle Scholar
  50. 50.
    Wilson, F.D., Flint, M., Deaton, W.R., Fishhoff, D.A., Perlak, F.J., Armstrong, I.A., Fuches, R.I., Berberich, S.A., Parks, N.I., and Stapp, B.R., Cotton Lines Containing a Bacillus thuringiensis Toxin to Pink Bollworm (Lepidoptera: Gelechiidae) and Other Insects, J. Econ. Entomol., 1992, vol. 85, pp. 1516–1521.Google Scholar
  51. 51.
    Fitt, G.P., An Australian Approach to IPM in Cotton: Integrating New Technologies to Minimize Insecticide Dependence, Crop Protect., 2000, vol. 19, pp. 793–800.CrossRefGoogle Scholar
  52. 52.
    Ma, X.M., Liu, X.X., Zhang, Q.W., Zhao, J.Z., Cai, Q.N., Ma, Y.A., and Chen, D.M., Assessment of Cotton Aphids, Aphis gossypii, and Their Natural Enemies on Aphid-Resistant and Aphid-Susceptible Wheat Varieties in a Wheat-Cotton Relay Intercropping System, Entomol. Exp. Appl., 2006, vol. 121, pp. 235–241.CrossRefGoogle Scholar
  53. 53.
    Pons, X., Lumbierres, B., and Albajes, R., Abundance of Non-Target Pests in Transgenic Bt-Maize: A Farm Scale Study, Eur. J. Entomol., 2005, vol. 102, pp. 73–79.Google Scholar
  54. 54.
    Yan, F., Bengtsson, M., Anderson, P., Ansebo, L., Xu, C., and Witzgall, P., Antennal Response of Cotton Bollworm (Heliocoverpa armigera) to Volatiles in Transgenic Bt Cotton, J. Appl. Entomol., 2004, vol. 128, pp. 354–357.CrossRefGoogle Scholar
  55. 55.
    Ding, Z.-Y., Xu, C.-R., and Wang, R.-J., Comparison of Several Important Isoenzymes between Bt Cotton and Regular Cotton, Acta Ecol. Sinica, 2001, vol. 21, pp. 332–336.Google Scholar
  56. 56.
    Zhang, Y., Yang, J., and Guo, Y., Changes of Condensed Tannins in Bt Cotton, Chin. Sci. J., 1999, vol. 5, pp. 1196–1198.Google Scholar
  57. 57.
    Escher, N., Kach, B., and Nentwig, W., Decomposition of Transgenic Bacillus thuringiensis Maize by Microorganisms and Woodlice Porciello scaber (Crustacea: Isopoda), Basic Appl. Ecol., 2000, vol. 1, pp. 161–169.CrossRefGoogle Scholar
  58. 58.
    Harwood, J.D., Wallin, W.G., and Obrycki, J.J., Uptake of Bt Endotoxins by Bontarget Herbivores and Higher Order Arthropod Predators: Molecular Evidence from a Transgenic Corn Agroecosystem, Mol. Ecol., 2005, vol. 14, pp. 2815–2823.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations