Skip to main content
Log in

Effect of growth temperature on the composition of phenols in pea roots

  • Brief Communications
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

It was shown that, in pea (Pisum sativum L.) roots, flavans are a dominating component of the soluble phenol fraction. In plants grown at low temperature (8°C), flavan content during the early growth phase was lower than in plants grown at 22°C, but later it increased and was by 40% higher than in plants grown at 22°C. Total phenol content in the two treatments differed insignificantly. Low growth temperature decreased the content of some phenolic compounds in pea seedling roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

FA:

fatty acid

PC:

phenolic compounds

References

  1. Fiziologiya i biokhimiya sel’skokhozyaistvennykh rastenii (Crop Physiology and Biochemistry) Tret’yakov, N.N., Ed., Moscow: Kolos, 2000.

    Google Scholar 

  2. Vovchuk, S.V., Makarenko, O.A., and Musich, V.N., Protein Kinase Activity and the Component Content in the Intracellular Liquid in Winter Wheat Seedling during Low Temperature Action, Fiziol. Biokh. Kul’t. Rast., 1994, vol. 26, pp. 180–185.

    CAS  Google Scholar 

  3. Prasad, T.K., Anderson, M.D., and Stewart, C.R., Localization and Characterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings, Plant Physiol., 1995, vol. 108, pp. 1597–1605.

    PubMed  CAS  Google Scholar 

  4. Barysheva, T.S., Zabotina, O.A., and Zabotin, A.I., Effect of Cycloheximide on the Synthesis of Polysaccharides and Glycosidase Activities in Cell Walls of Wheat Roots during Cold Acclimation, Russ. J. Plant Physiol., 1999, vol. 46, pp. 551–556.

    CAS  Google Scholar 

  5. Lyutova, M.I., Thermostability and Kinetic Properties of Enzymes during Temperature Adaptation in Plants, Russ. J. Plant Physiol., 1995, vol. 42, pp. 821–833.

    Google Scholar 

  6. Kasperska-Palach, A., Mechanism of Hardening in Grasses, Kholodostoikost’ rastenii (Plant Cold Resistance), Samygin, G.A., Ed., Moscow: Kolos, 1983, pp. 112–123.

    Google Scholar 

  7. Statsenko, A.P., Cryoprotective Role of Amino Acids in Plants, Fiziol. Biokh. Kul’t. Rast., 1992, vol. 24, pp. 560–564.

    CAS  Google Scholar 

  8. Novitskaya, G.V., Astakhova, N.V., Suvorova, T.A., and Trunova, T.I., The Role of the Membrane Lipid Component in the Chilling Tolerance of Cucumber Plants, Russ. J. Plant Physiol., 1999, vol. 46, pp. 537–543.

    CAS  Google Scholar 

  9. Andersen, R.A. and Kasperbauer, M.J., Effects of Near-Ultraviolet Radiation and Temperature on Soluble Phenols in Nicotiana tabacum, Phytochemistry, 1971, vol. 10, pp. 1229–1232.

    Article  CAS  Google Scholar 

  10. Makarova, L.E. and Rodchenko, O.P., The Content of Phenolcarboxylic Acids in Maize Root Cells Differing in Low Temperature Resistance, Dokl. Akad. Nauk, 1984, vol. 279, pp. 824–832.

    Google Scholar 

  11. Zaprometov, M.N., Fenol’nye soedineniya (Phenolic Compounds), Moscow: Nauka, 1993.

    Google Scholar 

  12. Dixon, R.A. and Paiva, N.L., Stress-Induced Phenylpropanoid Metabolism, Plant Cell, 1995, vol. 7, pp. 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  13. Xie, D.Y., Sharma, S.B., and Dixon, R.A., Anthocyanidin Reductases from Medicago tructula and Arabidopsis thaliana, Arch. Biochem. Biophys., 2004, vol. 422, pp. 91–102.

    Article  PubMed  CAS  Google Scholar 

  14. Geurts, R. and Fransen, H., Signal Transduction in Rhizobium-Induced Nodule Formation, Plant Physiol., 1996, vol. 112, pp. 447–453.

    Article  PubMed  CAS  Google Scholar 

  15. Long, S.R., Genes and Signals in the Rhizobium-Legume Symbiosis, Plant Physiol., 2001, vol. 125, pp. 69–72.

    Article  PubMed  CAS  Google Scholar 

  16. Novák, K., Lisá, L., and Škredleta, V., Rhizobial nod Gene-Inducing Activity in Pea Nodulation Mutants: Dissociation of Nodulation and Flavonoid Response, Physiol. Plant., 2004, vol. 120, pp. 546–555.

    Article  PubMed  Google Scholar 

  17. Jones, W.T., Broadhurst, R.B., and Lyttleton, J.W., The Condensed Tannins of Pasture Legume Species, Phytochemistry, 1976, vol. 15, pp. 1407–1409.

    Article  CAS  Google Scholar 

  18. Cooper, J.E. and Rao, J.R., Localized Changes in Flavonoid Biosynthesis in Roots of Lotus pedunculatus after Infection by Rhizobium loti, Plant Physiol., 1992, vol. 100, pp. 444–450.

    Article  PubMed  CAS  Google Scholar 

  19. Ray, H., Yu, M., Auser, P., Blahut-Beatty, L., McKesie, B., Westcott, N., Coulman, B., Lloyd, A., and Gruber, M.Y., Expression of Anthocyanins and Proanthocyanidins after Transformation of Alfalfa with Maize Lc, Plant Physiol., 2003, vol. 132, pp. 1448–1463.

    Article  PubMed  CAS  Google Scholar 

  20. Pang, Y., Peel, G.J., Wright, E., and Dixon, R.A., Early Steps in Proanthocyanidin Biosynthesis in the Model Legume Medicago truncatula, Plant Physiol., 2007, vol. 145, pp. 601–615.

    Article  PubMed  CAS  Google Scholar 

  21. Makarova, L.E., Luzova, G.B., and Lomovatskaya, L.A., The Role of Endogenous Phenolic Compounds in Infection of Pea Roots by Rhizobium leguminosarum at Low Temperature, Russ. J. Plant Physiol., 1998, vol. 45, pp. 712–719.

    CAS  Google Scholar 

  22. Zaprometov, M.N., Osnovy biokhimii fenol’nyh soedinenii (The Basic Biochemistry of Phenolic Compounds), Moscow: Vysshaya Shkola, 1974.

    Google Scholar 

  23. Lukovnikova, R.A. and Yarosh, N.P., Determination of Vitamins and Other Biologically Active Compounds, Metody biokhimicheskogo issledovaniya rastenii (Methods for Plant Biochemical Investigations), Ermakov, A.I., Ed., Leningrad: Agropromizdat, 1987, pp. 85–122.

    Google Scholar 

  24. Taylor, J.R., An Introduction to Error Analysis, California: Univ. Sci. Books Mill Valley, 1982.

    Google Scholar 

  25. Hagmann, M.L., Heller, W., and Grisebach, H., Induction and Characterization of a Microsomal Flavonoid 3’-Hydroxylase from Parsley Cell Culture, Eur. J. Biochem., 1983, vol. 134, pp. 547–554.

    Article  PubMed  CAS  Google Scholar 

  26. Singh, S., McCallum, J., Gruber, M.Y., Towrse, G.H.N., Muir, A.D., Bohm, B.A., Koupai-Andiazani, M.R., and Glass, A.D.M., Biosynthesis of Flavan-3-ols by Extracts of Onobrychis viciifolia, Phytochemistry, 1997, vol. 44, pp. 425–432.

    Article  CAS  Google Scholar 

  27. Winkel-Sherley, B., Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology and Biotechnology, Plant Physiol., 2001, vol. 126, pp. 485–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Rudikovskaya.

Additional information

Original Russian Text © E.G. Rudikovskaya, G.A. Fedorova, L.V. Dudareva, L.E. Makarova, A.V. Rudikovskii, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 5, pp. 793–797.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudikovskaya, E.G., Fedorova, G.A., Dudareva, L.V. et al. Effect of growth temperature on the composition of phenols in pea roots. Russ J Plant Physiol 55, 712–715 (2008). https://doi.org/10.1134/S1021443708050178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708050178

Key words

Navigation