Skip to main content
Log in

Activities of antioxidant system components and polyphenol oxidase in ontogeny of lawn grasses under megapolis conditions

  • Applied Aspects
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The activities of antioxidants enzymes (peroxidase (POX) and catalase (CAT)), the contents of non-enzymatic antioxidants (vitamin C, carotenoids), and the activity of polyphenol oxidase (PPO) were studied in vegetative organs of red clover (Trifolium pratense L.) and meadow-fescue (Festuca pratensis Huds.) growing under city conditions. The plants of three ages (virginal (V), generative (G), and subsenyl (SS)) were analyzed. The highest POX and PPO activities were characteristic of G plants, whereas CAT was most active in V plants. The content of low-molecular-weight antioxidants depended on species specificity and developmental stage and also on environment pollution. The content of ascorbate (vitamin C) declined linearly with plant development. Medium pollution also reduced the ascorbate content in tested plant leaves and roots. In contrast, the content of carotenoids increased with the increased activity of anthropogenic factors. The highest content of the pigments was in G plants. At all developmental stages and in all habitats, meadow-fescue (tolerant species) was characterized by the lower content of studied compounds than red clover (sensitive species). Thus, anthropogenic medium pollution resulted in the peroxide group accumulation, POX and PPO activation, carotenoid accumulation, and the ascorbate content decline in the vegetative tissues during the entire ontogeny of tolerant and sensitive lawn plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOS:

antioxidant system

CAT:

catalase

G:

generative plants

POX:

peroxidase

PPO:

polyphenol oxidase

ROS:

reactive oxygen species

SDL:

safe dose limit

SOD:

superoxide desmutase

SS:

subsenyl plants

V:

virginal plants

References

  1. Voskresenskaya, O.L., Some Ecological and Physiological Mechanisms of Adaptation in Annual Plant Ontogeny, Polivariantnost’ razvitiya organizmov, populyatsii i soobshchestv (Polyvariant Development of Organisms, Populations, and Communities), Voskresenskaya, O.L., Ed., Yoshkar-Ola: Mar. Gos. Univ., 2006, pp. 77–86.

    Google Scholar 

  2. Chirkova, T.V., Fiziologicheskie osnovy ustoichivosti rastenii (Physiological Basics for Plant Resistance), St. Petersburg: St. Petersburg Gos. Univ., 2002.

    Google Scholar 

  3. Bolwell, G.P., Mechanisms for the Generation of Reactive Oxygen Species in Plant Defense — a Broad Perspective, Physiol. Mol. Plant Pathol., 1997, vol. 51, pp. 347–366.

    Article  CAS  Google Scholar 

  4. Merzlyak, M.N. and Hendry, G.A., Free Radical Metabolism, Pigment Degradation and Lipid Peroxidation in Leaves during Senescence, Proc. Royal Soc. Edinbourgh, 1994, vol. 102B, pp. 459–471.

    Google Scholar 

  5. Inzu, D. and van Montague, M., Oxidative Stress in Plants, Curr. Opin. Biotechnol., 1995, vol. 6, pp. 153–158.

    Article  Google Scholar 

  6. Alscher, R.G., Donahue, J.L., and Cramer, C.L., Reactive Oxygen Species and Antioxidant: Relationships in Green Cells, Physiol. Plant., 1997, vol. 100, pp. 224–233.

    Article  CAS  Google Scholar 

  7. Zhang, J. and Kirkham, M.B., Drought-Stress Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species, Plant Cell Physiol., 1994, vol. 35, pp. 785–791.

    CAS  Google Scholar 

  8. Rachkovskaya, M.M. and Kim, L.O., Changes in Activities of Some Oxidases as an Index of Plant Adaptation to Industrial Pollutants, Gazoustoichivost’ rastenii (Plant Tolerance to Gases), Nikolaevskii, V.S., Ed., Novosibirsk: Nauka, 1980.

    Google Scholar 

  9. Zhukova, L.A., Voskresenskaya, O.L., and Grosheva, N.P., The Effect of Stand Density on Morphological and Physiological Features of Calendula officinalis L. Development, Ekologiya, 1996, vol. 2, pp. 104–110.

    Google Scholar 

  10. Keniya, M.V., Lukash, A.I., and Gus’kov, E.P., Role of Low-Molecular Antioxidants under Oxidative Stress, Usp. Sovrem. Biol., 1993, vol. 113, pp. 456–470.

    CAS  Google Scholar 

  11. Siess, H. and Stahl, W., Antioxidant Functions of Vitamins — Vitamin E and Vitamin C,β-Carotene, and Other Carotenoids and Intercellular Communication via Gap Junctions, Int. J. Vitamin Nutr. Res., 1997, vol. 67, pp. 364–367.

    Google Scholar 

  12. Meloni, D.A., Oliva, M.A., Martinez, C.A., and Cambraia, J., Photosynthesis and Activity of Superoxide Dismutase, Peroxidase and Glutathione Reductase in Cotton under Salt Stress, Environ. Exp. Bot, 2003, vol. 49, pp. 69–76.

    Article  CAS  Google Scholar 

  13. Aroca, R., Irigoyen, J.J., and Sanchez-Diaz, M., Photosynthetic Characteristics and Protective Mechanisms against Oxidative Stress during Chilling and Subsequent Recovery in Two Maize Varieties Differing in Chilling Sensitivity, Plant Sci., 2001, vol. 161, pp. 719–726.

    Article  CAS  Google Scholar 

  14. Voskresenskaya, O.L., Chernavina, I.A., and Aksenova, V.A., Effect of Zinc Surplus on Iron Accumulation and Activity of Iron-Containing Enzymes in Oat, Sov. Plant Physiol., 1986, vol. 33, pp. 1056–1060.

    CAS  Google Scholar 

  15. Prasad, K.V.S.K., Saradhi, P.P., and Sharmila, P., Concerted Action of Antioxidant Enzymes and Curtailed Growth under Zinc Toxicity in Brassica juncea, Environ. Exp. Bot., 1999, vol. 42, pp. 1–10.

    Article  CAS  Google Scholar 

  16. Polesskaya, O.G., Kashirina, E.I., and Alekhina, N.D., Changes in the Activity of Antioxidant Enzymes in Wheat Leaves and Roots as a Function of Nitrogen Source and Supply, Russ. J. Plant Physiol., 2004, vol. 51, pp. 615–620.

    Article  CAS  Google Scholar 

  17. Skulachev, V.P., Possible Role of Reactive Oxygen Species in Defense against Viral Infection, Biokhimiya, 1998, vol. 63, pp. 1691–1694.

    Google Scholar 

  18. Zhukova, L.A., Populyatsionnaya Zhizn’ Lugovykh Rastenii (Population Life of Meadow Plants), Yoshkar-Ola: Mar. Gos. Univ., 1995.

    Google Scholar 

  19. Nikolaevskii, V.S., Biologicheskie osnovy gazoustoichivosti rastenii (Biological Basics of Plant Tolerance to Gases), Novosibirsk: Nauka, 1979.

    Google Scholar 

  20. Bakhmatova, M.P. and Matveev, A.R., Trifolium pratense, L., Diagnozy i klyuchi vozrastnykh sostoyanii lugovykh rastenii: Metodicheskie razrabotki dlya studentov biologicheskikh spetsial’nostei (Indices for Determination of Meadow Plant Age-Specific Status), Serebryakova, T.I., Ed., Moscow: Mosk. Gos. Ped. Inst., 1983, part 2, pp. 69–75.

    Google Scholar 

  21. Summer, R.J., Lipoid Oxidase Studies — a Method for the Determination of Lipooxidase Activity, Ind. Eng. Chem., 1943, vol. 15, pp. 14–15.

    Article  Google Scholar 

  22. Boyarkin, A.N., Fast Method for Peroxidase Activity Determination, Biokhimiya, 1951, vol. 16, pp. 352–355.

    CAS  Google Scholar 

  23. Boyarkin, A.N., Fast Method for Polyphenoloxidase Activity Determination, Tr. Inst. Fiziol. Rast., 1954, vol. 8, pp. 398–403.

    Google Scholar 

  24. Chupakhina, G.N., Colorimetric Method for Quantification of Ascorbic Acid, Spetsial’nyi praktikum po biokhimii i fiziologii rastenii (Special Manual for Plant Biochemistry and Physiology), Okuntsov, M.M., Ed., Tomsk: Tomsk. Gos. Univ., 1974, pp. 27–31.

    Google Scholar 

  25. Lichtenthaler, H.K., Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  26. Veselov, A.P., Regulatory Principles for Plant Responses to Heat Shock, Vestn. Nizhegorod. Gos. Univ., Ser. Biol., Nizhnii Novgorod: Nizh. Novgor. Gos. Univ., 2001, pp. 69–73.

    Google Scholar 

  27. Tarchevsky, I.A., Signal’nye sistemy kletok rastenii (Signal Transduction Pathways in Plant Cells), Moscow: Nauka, 2002.

    Google Scholar 

  28. Mitteler, R., Oxidative Stress, Antioxidants, and Stress Tolerance, Trends Sci., 2002, vol. 7, pp. 405–409.

    Article  Google Scholar 

  29. Smirnoff, N., Ascorbic Acid: Metabolism and Functions of a Multi-Facetted Molecule, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 229–235.

    PubMed  CAS  Google Scholar 

  30. Krinsky, N.I., Antioxidant Functions of Carotenoids, Free Radic. Biol. Med., 1989, vol. 7, pp. 617–635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Voskresenskaya.

Additional information

Original Russian Text © M.G. Polovnikova, O.L. Voskresenskaya, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 5, pp. 777–785.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polovnikova, M.G., Voskresenskaya, O.L. Activities of antioxidant system components and polyphenol oxidase in ontogeny of lawn grasses under megapolis conditions. Russ J Plant Physiol 55, 699–705 (2008). https://doi.org/10.1134/S1021443708050154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708050154

Key words

Navigation