Skip to main content

Advertisement

Log in

Characterization of cell wall properties in needles from Scotch pine trees of various vigor

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Ion-exchange properties of needle cell walls were studied on healthy and severely weakened Scotch pine (Pinus sylvestris L.) trees subjected to industrial pollutions with sulfur and heavy metals. Three types of cation-exchange groups were identified: carboxylic groups of polygalacturonic acid, carboxylic groups unrelated to polygalacturonic acid, and phenolic OH-groups. The needles of impaired trees (vigor state IV) differed from needles of healthy plants (vigor state I) by a higher coefficient of cell wall swelling, higher nitrogen content, and lower content of ion-exchanging groups in the cell wall structure. It is supposed that differences in ion-exchange capacity of cell walls could be among the causes for distribution of pine trees into several groups according to their vigor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

PGUA:

polygalacturonic acid

References

  1. Meychik, N.R., Ermakov, I.P., and Savvateeva, M.V., Ionogenic Groups in the Cell Wall of Wheat Roots, Russ. J. Plant Physiol., 1999, vol. 46, pp. 742–747.

    Google Scholar 

  2. Meychik, N.R. and Ermakov, I.P., Swelling of Cell Wall Reflects Its Functional Features, Biokhimiya, 2001, vol. 66, pp. 223–233.

    Google Scholar 

  3. Lyubimova, E.G., Ion-Exchanging Features of Cell Walls in Lichenificated Ascomycete Cladonia rangiferina (L.) F.H. Wigg., Cand. Sci. (Biol.) Dissertation, Moscow: Mosk. Gos. Univ., 2005.

    Google Scholar 

  4. Wierzbickaa, M., Lead in the Apoplast of Allium cepa L. Root Tips-Ultrastructural Studies, Plant Sci., 1998, vol. 133, pp. 105–119.

    Article  Google Scholar 

  5. Brumelis, G., Brown, D.H., Nikodemus, O., and Tjarve, D., The Monitoring and Risk Assessment of Zn Deposition around Metal Smelter in Latvia, Environ. Monitor. Asses., 1999, vol. 58, pp. 201–212.

    Article  CAS  Google Scholar 

  6. Vasquez, J.A. and Leonardi, P.I., Effects of Copper Pollution on the Ultrastructure of Lessonia spp., Hydrobiologia, 1999, pp. 375–383.

  7. Vázquez, M.D., Fernández, J.A., López, J., and Carballeira, A., Effects of Water Acidity and Metal Concentration on Accumulation and Within-Plant Distribution of Metals in the Aquatic Bryophyte Fontinalis antipyretica, Water, Air, Soil Pollut., 2000, vol. 120, pp. 1–20.

    Article  Google Scholar 

  8. Philip, L., Iyengar, L., and Venkobachar, C., Site of Interaction of Copper on Bacillus Polymyxa, Water, Air, Soil Pollut., 2000, vol. 119, pp. 11–21.

    Article  CAS  Google Scholar 

  9. Macfie, S.M. and Welbourn, P.M., The Cell Wall as a Barrier to Uptake of Metal Ions in the Unicellular Green Alga Chlamydomonas reinhardtii (Chlorophyceae), Arch. Environ. Contam. Toxicol., 2000, vol. 39, pp. 413–419.

    Article  PubMed  CAS  Google Scholar 

  10. Jan, F., Yamashita, K., Matsumoto, H., and Maeda, M., Protein and Peroxidase Changes in Various Root-Cell Fractions of Two Upland Rice Cultivars Differing in Al Tolerance, Environ. Exp. Bot., 2001, vol. 46, pp. 141–146.

    Article  CAS  Google Scholar 

  11. Cohen-Shoel, N., Barkay, Z., Ilzycer, D., Gilath, I., and Tel-Or, E., Biofiltration of Toxic Elements by Azolla Biomass, Water, Air, Soil Pollut., 2002, vol. 135, pp. 93–104.

    Article  CAS  Google Scholar 

  12. Hauck, M., Paul, A., Mulack, C., Fritz, E., and Runge, M., Effects of Manganese on the Viability of Vegetative Diaspores of the Epiphytic Lichen Hypogymnia physodes, Environ. Exp. Bot., 2002, vol. 47, pp. 127–142.

    Article  CAS  Google Scholar 

  13. Jarvis, M.D. and Leung, D.W.M., Chelated Lead Transport in Pinus radiata: An Ultrastructural Study, Environ. Exp. Bot., 2002, vol. 48, pp. 21–32.

    Article  CAS  Google Scholar 

  14. Yarmishko, V.T., Sosna obyknovennaya i atmosfernoe zagryaznenie na Evropeiskom Severe (Pinus silvestris and Atmospheric Pollution in the European North), St. Petersburg: Nauch. Issled. Inst. Khimii St. Petersburg Gos. Univ., 1997.

    Google Scholar 

  15. Lukina, N.V. and Nikonov, V.V., Biogeokhimicheskie tsikly v lesakh Severa v usloviyakh aerotekhnogennogo zagryazneniya (Biochemical and Geochemical Cycles in North Forests under Air-Technogenic Pollution), Apatity: Kol’sk. Nauch. Tsentr Russ. Akad. Nauk, 1996.

    Google Scholar 

  16. Meychik, N.R. and Yermakov, I.P., A New Approach to the Investigation on the Tonogenic Groups of Root Cell Wall, Plant Soil, 1999, vol. 217, pp. 257–264.

    Article  Google Scholar 

  17. Helfferich, F., Ionenaustauscher, Weinheim: Chemie, 1959.

    Google Scholar 

  18. Rumshinskii, L.Z., Matematicheskaya obrabotka rezul’tatov eksperimenta (Mathematical Processing of Experimental Results), Moscow: Nauka, 1971.

    Google Scholar 

  19. Shchetinina, L.A. and Butenko, V.A., Colorimetric Method for Investigation of Total Nitrogen in Soil and Plants, Pochvovedenie, 1957, no. 8, pp. 98–101.

  20. Girs, G.I., Method for Investigation of Total and Protein Nitrogen in Plant Tissues, Issledovanie obmena veshchestv drevesnykh rastenii (Investigation of Woody Plant Metabolism), Novosibirsk: Nauka, 1985, pp. 40–45.

    Google Scholar 

  21. Cassab, G.I. and Varner, J.E., Cell Wall Proteins, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1988, vol. 39, pp. 321–353.

    Article  CAS  Google Scholar 

  22. Albert, A. and Serjeant, E., Ionization Constants, London: Methuen, 1962.

    Google Scholar 

  23. Kukkola, E., Huttunen, S., Back, J., and Rautio, P., Scots Pine Needle Injuries at Subarctic Industrial Sites, Trees, 1997, vol. 11, pp. 378–387.

    Article  Google Scholar 

  24. Micheli, F., Pectin Methylesterases: Cell Wall Enzymes with Important Roles in Plant Physiology, Trends Plant Sci., 2001, vol. 6, pp. 414–419.

    Article  PubMed  CAS  Google Scholar 

  25. Sharova, E.I., Kletochnaya stenka rastenii (Plant Cell Wall), St. Petersburg: St. Petersburg Gos. Univ., 2004.

    Google Scholar 

  26. Fuksman, I.L., Vliyanie prirodnykh i antropogennykh faktorov na metabolizm veshchestv vtorichnogo proiskhozhdeniya u drevesnykh rastenii (Effects of Natural and Anthropogenic Factors on Secondary Metabolism in Woody Plants), Petrozavodsk: Karel’sk. Nauch. Tsentr Russ. Akad. Nauk, 2002.

    Google Scholar 

  27. Fry, S.C., Phenolic Components of the Primary Cell Wall and Their Possible Role in the Hormonal Regulation of Growth, Planta, 1979, vol. 146, pp. 343–351.

    Article  CAS  Google Scholar 

  28. Terebova, E.N., Galibina, N.A., Sazonova, T.A., and Talanova, T.Yu., Individual Variability of Pinus sivestris Metabolism under Industrial Pollution, Lesovedenie, 2003, no. 1, pp. 73–76.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Galibina.

Additional information

Original Russian Text © N.A. Galibina, E.N. Terebova, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 3, pp. 419–425.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galibina, N.A., Terebova, E.N. Characterization of cell wall properties in needles from Scotch pine trees of various vigor. Russ J Plant Physiol 55, 378–384 (2008). https://doi.org/10.1134/S102144370803014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144370803014X

Key words