Skip to main content

Advertisement

Log in

Effects of salt stress on expression of nitrate transporter and assimilation-related genes in tomato roots

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Nitrate is an essential nitrogen source for plant growth and development. The experiments on nitrate uptake by tomato (Solanum esculentum L., cv. L402) seedlings pretreated with 48-h nitrogen starvation and 24-h 75 mM NaCl stress were performed at four different NO3 concentrations. The results showed that salt stress decreased NO 3 uptake regardless of the nitrate concentration. In order to study the effect of salt stress on nitrate transporters (NRT), nitrate reductase (NR), and glutamine synthetase (GS) gene expression patterns in young tomato roots, we analyzed the transcript levels of LeNRT, LeNR, and LeGS1 under 75 mM NaCl stress by the technique of real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results indicated that transcripts of LeNRT1.1 and LeNRT1.2 were significantly decreased, suggesting that LeNRT1 may be at least partly responsible for the reduction in nitrate uptake. The transcription of LeNRT2.1 was also decreased; but the mRNA levels of LeNRT2.2 and LeGS1.1 were not influenced dramatically; the transcription of LeNRT2.3 was slightly increased after 12-h salt stress. LeNR transcription in tomato roots exhibited transient up-regulation at 4-h salt treatment. However, the transcription of LeGS1.2 was significantly decreased under the salt treatment. Our results suggest that the down-regulation of LeNRT1 gene expression may be mainly involved in the reduction of nitrate uptake under severe salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

GS:

glutamine synthetase

NR:

nitrate reductase

NRT:

nitrate transporters

References

  1. Rai, A.K. and Rai, V., Effect of NaCl on Growth, Nitrate Uptake and Reduction and Nitrogenase Activity of Azolla pinnata-Anabaene azollae, Plant Sci., 2003, vol. 164, pp. 61–69.

    Article  CAS  Google Scholar 

  2. Ullrich, W.R., Transport of Nitrate and Ammonium through Plant Membranes, Nitrogen Metabolism of Plants, Mengel, K. and Pilbeam, D.J., Eds., Oxford: Clarendon, 1992, pp. 121–137.

    Google Scholar 

  3. Aslam, M., Huffaker, R.C., and Rais, D.W., Early Effects of Salinity on Nitrate Assimilation in Barley Seedling, Plant Physiol., 1984, vol. 76, pp. 321–325.

    Article  CAS  PubMed  Google Scholar 

  4. Debouba, M., Gouia, H., Valadier, M.H., Ghorbel, M.H., and Suzuki, A., Salinity-Induced Tissue-Specific Diurnal Changes in Nitrogen Assimilatory Enzymes in Tomato Seedlings Grown under High or Low Nitrate Medium, Plant Physiol. Biochem., 2006, vol. 44, pp. 409–419.

    Article  CAS  PubMed  Google Scholar 

  5. Kafkafi, U., Siddiqi, M.Y., Ritchie, R.J., Glass, A.D.M., and Ruth, T.J., Reduction of Nitrate (13NO3) Influx and Nitrogen (13N) Translocation by Tomato and Melon Varieties after Short Exposure to Calcium and Potassium Chloride Salts, J. Plant Nutr., 1992, vol. 15, pp. 959–975.

    Article  CAS  Google Scholar 

  6. Abdelgadir, E.M., Oka, M., and Fujiyama, H., Characteristics of Nitrate Uptake by Plants under Salinity, J. Plant Nutr., 2005, vol. 28, pp. 33–46.

    Article  CAS  Google Scholar 

  7. Cramer, G.R., Lauchli, A., and Epstein, E., Effects of NaCl and CaCl2 on Ion Activities in Complex Nutrient Solutions and Root Growth of Cotton, Plant Physiol., 1986, vol. 81, pp. 792–797.

    Article  CAS  PubMed  Google Scholar 

  8. Klobus, G., Ward, M.R., and Huffaker, R.C., Characteristics of Injury and Recovery of Net NO 3 Transport of Barley Seedling from Treatments of NaCl, Plant Physiol., 1988, vol. 87, pp. 878–882.

    Article  CAS  PubMed  Google Scholar 

  9. Fei, Z., Tang, X., Alba, R., and Giovannoni, J., Tomato Expression Database (TED): A Suite of Data Presentation and Analysis Tools, Nucleic Acids Res., 2006, vol. 34, pp. 766–770.

    Article  Google Scholar 

  10. Lauter, F.R., Ninnemann, O., Bucher, M., Riesmeier, J.W., and Frommer, W.B., Preferential Expression of an Ammonium Transporter and of Two Putative Nitrate Transporters in Root Hairs of Tomato, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 8139–8144.

    Article  CAS  PubMed  Google Scholar 

  11. Forde, B.G., Nitrate Transporters in Plants: Structure, Function and Regulation, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 219–235.

    Article  CAS  PubMed  Google Scholar 

  12. Gacangau, F., Vedele, F.D., Moureaux, T., Dorbe, M.F., Leydecker, M.T., and Caboche, M., Expression of Leaf Nitrate Reductase Genes from Tomato and Tobacco in Relation to Light-Dark Regimes and Nitrate Supply, Plant Physiol., 1988, vol. 88, pp. 383–388.

    Article  Google Scholar 

  13. Perez-Rodriguez, J. and Valpuesta, V., Expression of Glutamine Synthetase Genes during Natural Senescence of Tomato Leaves, Physiol. Plant., 1996, vol. 97, pp. 576–582.

    Article  CAS  Google Scholar 

  14. Bauer, D., Biehler, K., Fock, H., Carrayol, E., Hirel, B., Migg, A., and Becker, T., A Role for Cytosolic Glutamine Synthetase in the Remobilization of Leaf Nitrogen during Water Stress in Tomato, Physiol. Plant., 1997, vol. 99, pp. 241–248.

    Article  CAS  Google Scholar 

  15. Popova, O.V., Dietz, K.J., and Golldack, D., Salt-Dependent Expression of a Nitrate Transporter and Two Amino Acid Transporter Genes in Mesembryanthemum crystallinum, Plant Mol. Biol., 2003, vol. 52, pp. 569–578.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, T.Z., Cao, K.M., Xia, M., and Wang, X.P., Functional Characterization of a Putative Nitrate Transporter Gene Promoter from Rice, Acta Biochim. Biophys. Sinica, 2006, vol. 38, pp. 795–802.

    Article  CAS  Google Scholar 

  17. Deak, K.I. and Malamy, J., Osmotic Regulation of Root System Architecture, Plant J., 2005, vol. 43, pp. 17–28.

    Article  CAS  PubMed  Google Scholar 

  18. Remans, T., Nacry, P., Pervent, M., Girin, T., Tillard, P., Lepetit, M., and Gojon, A., A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis, Plant Physiol., 2006, vol. 140, pp. 909–921.

    Article  CAS  PubMed  Google Scholar 

  19. Queada, A., Krapp, A., Trueman, L.J., Daniel-Vedele, F., Fernandez, E., Forde, B.G., and Caboche, M., PCR-Identification of a Nicotiana plumbaginifolia cDNA Homologous to the High-Affinity Nitrate Transporters of the crnA Family, Plant Mol. Biol., 1997, vol. 34, pp. 265–274.

    Article  Google Scholar 

  20. Krapp, A., Fraisier, V., Scheible, W.R., Quesada, A., Gojon, A., Stitt, M., Caboche, M., and Daniel-Vedele, F., Expression Studies of NRT2.1 Np, a Putative High-Affinity Nitrate Transporter: Evidence for Its Role in Nitrate Uptake, Plant J., 1998, vol. 14, pp. 723–731.

    Article  CAS  Google Scholar 

  21. Debouba, M., Gouia, H., Suzuki, A., and Ghorbel, M.H., NaCl Stress Effects on Enzymes Involved in Nitrogen Assimilation Pathway in Tomato Lycopersicon esculentum Seedlings, J. Plant Physiol., 2006, vol. 163, pp. 1247–1258.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, W.F. and Shi, W.M., Expression Profiling of the 14-3-3 Gene Family in Response to Salt Stress and Potassium and Iron Deficiencies in Young Tomato (Solanum lycopericum) Roots: Analysis by Real-Time RT-PCR, Ann. Bot., 2006, vol. 98, pp. 965–974.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Y.H., Garvin, F.D., and Kochian, L.V., Nitrate-Induced Genes in Tomato Roots. Array Analysis Reveals Novel Genes That May Play a Role in Nitrogen Nutrition, Plant Physiol., 2001, vol. 127, pp. 345–359.

    Article  CAS  PubMed  Google Scholar 

  24. Li, S.M. and Shi, W.M., Quantitative Characterization of Nitrogen Regulation of OsAMT1;1, OsAMT1;2 and OsAMT2;2 Expression in Rice Seedlings, Russ. J. Plant Physiol., 2006, vol. 53, pp. 837–843.

    Article  CAS  Google Scholar 

  25. Amitai-Zeigersona, H., Scolnikb, P.A., and Bar-Zvi, D., Tomato Asrl mRNA and Protein Are Transiently Expressed Following Salt Stress, Osmotic Stress and Treatment with Abscisic Acid, Plant Sci., 1995, vol. 110, pp. 205–213.

    Article  Google Scholar 

  26. Zhu, J.K., Plant Salt Tolerance, Trends Plant Sci., 2001, vol. 6, pp. 66–71.

    Article  CAS  PubMed  Google Scholar 

  27. Flores, P., Botella, M.A., Cerda, A., and Martinez, V., Influence of Nitrate Level on Nitrate Assimilation in Tomato (Lycopersicon esculentum) Plants under Saline Stress, Can. J. Bot., 2004, vol. 82, pp. 207–213.

    Article  Google Scholar 

  28. Grattan, S.R. and Grieve, C.M., Mineral Nutrient Acquisition and Response by Plants Grown in Saline Environments, Handbook of Plant and Crop Stress, Pessarakli, M., Ed., New York: Marcel Dekker, 1994, pp. 203–226.

    Google Scholar 

  29. Lewis, O.A.M., Leidi, E., and Lips, S.H., Effect of Nitrogen Source on Growth Response to Salinity Stress in Maize and Wheat, New Phytol., 1989, vol. 111, pp. 155–160.

    Article  CAS  Google Scholar 

  30. Leidi, E.O., Silberbush, M., Soares, M.I.M., and Lips, S.H., Salinity and Nitrogen Nutrition Studies on Peanut and Cotton Plants, J. Plant Nutr., 1992, vol. 15, pp. 591–604.

    Article  Google Scholar 

  31. Orsel, M., Filleur, S., Fraisier, V., and Daniel-Vedele, F., Nitrate Transport in Plants: Which Gene and Which Control? J. Exp. Bot., 2002, vol. 53, pp. 825–833.

    Article  CAS  PubMed  Google Scholar 

  32. Abd-El Baki, G.K., Siefritz, F., Man, H.M., Weiner, H., Haldenhoff, R., and Kaiser, W.M., Nitrate Reductase in Zea mays L. under Salinity, Plant, Cell Environ., 2000, vol. 23, pp. 515–521.

    Article  CAS  Google Scholar 

  33. Flores, P., Botella, M.A., Martinez, V., and Cerda, A., Ionic and Osmotic Effects of Nitrate Reductase Activity in Tomato Seedling, J. Plant Physiol., 2000, vol. 156, pp. 552–557.

    CAS  Google Scholar 

  34. Carillo, P., Mastrolonardo, G., Nacca, F., and Fuggi, A., Nitrate Reductase in Durum Wheat Seedling as Affected by Nitrate Nutrition and Salinity, Funct. Plant Biol., 2005, vol. 32, pp. 209–219.

    Article  CAS  Google Scholar 

  35. Santos, C., Pereira, A., Pereira, S., and Teixeira, J., Regulation of Glutamine Synthetase Expression in Sunflower Cells Exposed to Salt and Osmotic Stress, Sci. Hort., 2004, vol. 103, pp. 101–111.

    CAS  Google Scholar 

  36. Boucaud, J. and Billard, J.P., La Glutamine Synthetase du Suaeda maritima. Action In Vivo et In Vitro du NaCl, Physiol. Plant., 1981, vol. 53, pp. 558–564.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to W. M. Shi.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Shi, W.M. & Xu, W.F. Effects of salt stress on expression of nitrate transporter and assimilation-related genes in tomato roots. Russ J Plant Physiol 55, 232–240 (2008). https://doi.org/10.1134/S1021443708020106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708020106

Key words