Advertisement

Russian Journal of Plant Physiology

, Volume 55, Issue 1, pp 59–67 | Cite as

Effect of drought stress implemented at pre- or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars

  • A. Gunes
  • A. Inal
  • M. S. Adak
  • E. G. Bagci
  • N. Cicek
  • F. Eraslan
Research Papers

Abstract

Drought is one of the most important factors limiting chickpea production in arid and semi-arid regions. There is little information regarding genotypic variation for drought tolerance in chickpea cultivars. Screening for drought tolerance is very important. It is essential to identify the physiological mechanisms of drought tolerance to complete conventional breeding program. Glasshouse experiment was carried out to study the genotypic variation among 11 chickpea (Cicer arietinum L.) cultivars. Plants were grown either under optimum conditions or drought stress was implemented at pre-or post-anthesis stages. The drought susceptibility index (DSI) was used as the measure of drought tolerance. Relationships between DSI and excised-leaf water loss (RWL), relative water content (RWC), membrane permeability, ascorbic acid, proline, and chlorophyll contents, lipid peroxidation, and hydrogen peroxide concentrations were determined in order to find out whether these physiological parameters could be used as the genotypic selection criteria for drought tolerance. The results of this study indicated that there was a wide variation in tolerance to drought stress among the chickpea cultivars, which could be exploited in breeding new chickpea cultivars with high drought tolerance. The results also demonstrated that drought-tolerant cultivars had a higher RWC, ascorbic acid and proline concentrations, but lower RWL and membrane permeability in comparison to drought-sensitive cultivars. The significant and a well defined relationships between DSI and RWC, RWL, ascorbic acid, proline, and membrane permeability were found. It was concluded that these parameters could be instrumental in predicting the drought tolerance of chickpea cultivars.

Key words

Cicer arietinum genotypes ascorbic acid chlorophyll drought tolerance excised-leaf water loss H2O2 lipid peroxidation membrane permeability proline relative water content 

Abbreviations

DSI

drought susceptibility index

EDS

early drought stress

LDS

late drought stress

MDA

malondialdehyde

RCC

relative chlorophyll content

RWC

relative water content

RWL

excised leaf water loss

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singh, K.B., Chickpea (Cicer arietinum L.), Field Crops Res., 1997, vol. 53, pp. 161–170.CrossRefGoogle Scholar
  2. 2.
    Kramer, P.J., Drought Stress and Origin of Adaptation, Adaptation of Plant to Water and High Temperatures Stress, Tuner, N.C. and Kramer, P.J., Eds., New York: Wiley, 1980, pp. 6–20.Google Scholar
  3. 3.
    Mukherjee, S.P. and Choudhuri, M.A., Implications of Water Stress-Induced Changes in the Leaves of Indigenous Ascorbic Acid and Hydrogen Peroxide in Vigna Seedlings, Physiol. Plant., 1983, vol. 58, pp. 166–170.CrossRefGoogle Scholar
  4. 4.
    Dencic, S., Kastori, R., Kobiljski, B., and Duggan, B., Evaluation of Grain Yield and Its Components in Wheat Cultivates and Landraces under Near Optimal and Drought Conditions, Euphytica, 2000, vol. 113, pp. 43–52.CrossRefGoogle Scholar
  5. 5.
    Altinkut, A., Kazan, K., Ipekci, Z., and Gozukirmizi, N., Tolerance to Paraquat Is Correlated with the Traits Associated with Water Stress Tolerance in Segregating F2 Populations of Barley and Wheat, Euphytica, 2001, vol. 121, pp. 81–86.CrossRefGoogle Scholar
  6. 6.
    Araghi, G.S. and Assad, M.T., Evaluation of Four Screening Techniques for Drought Resistance and Their Relationship to Yield Reduction Ratio in Wheat, Euphytica, 1998, vol. 103, pp. 293–299.CrossRefGoogle Scholar
  7. 7.
    Dhanda, S.S. and Sethi, G.S., Inheritance of Excised-Leaf Water Loss and Relative Water Content in Bread Wheat (Triticum aestivum), Euphytica, 1998, vol. 104, pp. 39–47.CrossRefGoogle Scholar
  8. 8.
    Keles, Y. and Oncel, I., Growth and Solute Composition in Two Wheat Species Experiencing Combined Influence of Stress Conditions Russ. J. Plant Physiol., 2004, vol. 51, pp. 228–233.CrossRefGoogle Scholar
  9. 9.
    Clarke, J.M., Romagosa, I., Jana, S., Srivastava, J.P., and McCaig, T.N., Relationship of Excised-Leaf Water Loss Rate and Yield of Durum Wheat in Diverse Environment, Can. J. Plant Sci., 1989, vol. 69, pp. 1057–1081.Google Scholar
  10. 10.
    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid Determination of Free Proline for Water-Stress Studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  11. 11.
    Cekic, C. and Paulsen, G.M., Evaluation of a Ninhydrin Procedure for Measuring Membrane Thermostability of Wheat, Crop Sci., 2001, vol. 41, pp. 1351–1355.CrossRefGoogle Scholar
  12. 12.
    Hodges, D.M., DeLong, J.M., Forney, C.F., and Prange, R.K., Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds, Planta, 1999, vol. 207, pp. 604–611.CrossRefGoogle Scholar
  13. 13.
    Terenashi, Y., Tanaka, A., Osumi, M., and Fukui, S., Catalase Activity of Hydrocarbon Utilizing Candida Yeast, Agr. Biol. Chem., 1974, vol. 38, pp. 1213–1216.Google Scholar
  14. 14.
    Bruckner, P.L. and Frohberg, R.C., Stress Tolerance and Adaptation in Spring Wheat, Crop Sci., 1987, vol. 27, pp. 31–36.CrossRefGoogle Scholar
  15. 15.
    Allen, R.D., Dissection of Oxidative Stress Tolerance Using Transgenic Plants, Plant Physiol., 1995, vol. 107, pp. 1049–1054.PubMedGoogle Scholar
  16. 16.
    Sairam, R.K. and Saxena, D.C., Oxidative Stress and Antioxidants in Wheat Cultivars: Possible Mechanism of Water Stress Tolerance, J. Agron. Crop Sci., 2000, vol. 184, pp. 55–61.CrossRefGoogle Scholar
  17. 17.
    Sairam, R.K., Deshmukh, P.S., and Saxena, D.C., Role of Antioxidant Systems in Wheat Cultivars Tolerance to Water Stress, Biol. Plant., 1998, vol. 41, pp. 387–394.CrossRefGoogle Scholar
  18. 18.
    Steward, C.R. and Hanson, A.D., Proline Accumulation as a Metabolic Response to Water Stress, Adaptation of Plant to Water and High Temperatures Stress, Tuner, N.C. and Kramer, P.J., Eds., New York: Wiley, 1980, pp. 173–189.Google Scholar
  19. 19.
    Tan, B.H. and Halloran, G.M., Variation and Correlations of Proline Accumulation in Spring Wheat Cultivars, Crop Sci., 1980, vol. 22, pp. 459–463.CrossRefGoogle Scholar
  20. 20.
    Khan, A.J., Hassan, S., Tariq, M., and Khan, T., Haploidy Breeding and Mutagenesis for Drought Tolerance in Wheat, Euphytica, 2001, vol. 120, pp. 409–414.CrossRefGoogle Scholar
  21. 21.
    Franca, M.G.C., Thi, A.T.P., Pimental, C., Rossiello, R.O.P., Fodil, Y.Z., and Laffray, D., Differences in Growth and Water Relations among Phaseolus vulgaris Cultivars in Response to Induced Drought Stress, Environ. Exp. Bot., 2000, vol. 43, pp. 227–237.CrossRefGoogle Scholar
  22. 22.
    Leport, L., Turner, N.C., French, R.J., Barr, M.D., Duda, R., Davies, S.L., Tennant, D., and Siddique, K.H.M., Physiological Responses of Chickpea Cultivars to Terminal Drought in a Mediterranean-Type Environment, Eur. J. Agron., 1999, vol. 11, pp. 279–291.CrossRefGoogle Scholar
  23. 23.
    Baisak, R., Rana, D., Acharya, B.B., and Kar, M., Alteration in the Activities of Active Oxygen Scavenging Enzymes of Wheat Leaves Subjected to Water Stress, Plant Cell Physiol., 1994, vol. 35, pp. 489–495.Google Scholar
  24. 24.
    Menconi, M., Sgherri, C.L.M., Pinzino, C., and Navari-Izzo, F., Activated Oxygen Production and Detoxification in Wheat Plants Subjected to a Water Deficit Programme, J. Exp. Bot., 1995, vol. 46, pp. 1123–1130.CrossRefGoogle Scholar
  25. 25.
    Kraus, T.E., McKersie, B.D., and Fletcher, R.A., Paclobutrazol Induced Tolerance of Wheat Leaves to Paraquat May Involve Increased Antioxidant Enzyme Activity, J. Plant Physiol., 1995, vol. 145, pp. 570–576.Google Scholar
  26. 26.
    Pastori, G.M. and Trippi, V.S., Oxidative Stress Induces High Rate of Glutathione Reductase Synthesis in a Drought Resistant Maize Strain, Plant Cell Physiol., 1992, vol. 33, pp. 957–961.Google Scholar
  27. 27.
    Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., and Apracio-Tejo, P., Drought Induces Oxidative Stress in Pea Plants, Planta, 1994, vol. 194, pp. 346–352.CrossRefGoogle Scholar
  28. 28.
    Campos, P.S., Ramalho, J.C., Lauriano, J.A., Silva, M.J., and do Ceu Matos, M., Effects of Drought on Photosynthetic Performance and Water Relations of Four Vigna Cultivars, Photosynthetica, 1999, vol. 36, pp. 79–87.CrossRefGoogle Scholar
  29. 29.
    Egert, M. and Tevini, M., Influence of Drought on Some Physiological Parameters Symptomatic for Oxidative Stress in Leaves of Chives (Allium schoenoprasum), Environ. Exp. Bot., 2002, vol. 48, pp. 43–49.CrossRefGoogle Scholar
  30. 30.
    Anbessa, Y. and Bejiga, G., Evaluation of Ethiopian Chickpea Landraces for Tolerance to Drought, Gen. Res. Crop Environ., 2002, vol. 49, pp. 557–564.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. Gunes
    • 1
  • A. Inal
    • 1
  • M. S. Adak
    • 2
  • E. G. Bagci
    • 1
  • N. Cicek
    • 1
  • F. Eraslan
    • 1
  1. 1.Department of Soil Science and Plant Nutrition, Faculty of AgricultureUniversity of AnkaraAnkaraTurkey
  2. 2.Department of Field Crops, Faculty of AgricultureUniversity of AnkaraAnkaraTurkey

Personalised recommendations