Russian Journal of Plant Physiology

, Volume 54, Issue 6, pp 833–844 | Cite as

Superfamily of monomeric GTP-binding proteins in plants: 1. Role of rop proteins in the control of plant growth and development

  • G. V. NovikovaEmail author
  • I. E. Moshkov


The control of plant growth, differentiation, and development is considered in relation to the involvement of monomeric GTP-binding proteins (mG-proteins) in the extra-and intracellular signal transduction. The principal attention is paid to Rop mG-proteins, unique small GTPases of eukaryotic cells functioning during various developmental stages of plants, from pollen tube and root hair growth to plant responses to biotic and abiotic stresses.

Key words

plants monomeric GTP-binding proteins growth and development biotic and abiotic stresses signal transduction 



actin depolymerization factor


constitutively active mutant

CRIB motif

Cdc42/Rac interactive binding

DH domains

Dbl-homology domains


dominant negative mutant


filamentous actin


GTP-binding protein


GTPase-activating protein


guanine nucleotide dissociation inhibitor


guanine nucleotide exchange protein


green fluorescent protein


inositol 1,4,5-triphosphate


kinase-associated protein phosphatase


monomeric GTP-binding protein


mouse talin




protein kinase B


phospholipase C


phospholipase D1


phosphatidylinositol monophosphate






Ral-binding protein 1


Ral GDP dissociation stimulator

RIC protein

Rop-interacting CRIB motif-containing protein


receptor-like protein kinase


Rho of plants


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E., Analysis of the Small GTPase Gene Superfamily of Arabidopsis, Plant Physiol., 2003, vol. 131, pp. 1191–1208.PubMedCrossRefGoogle Scholar
  2. 2.
    Assmann, S.M., Heterotrimeric and Unconventional GTP Binding Proteins in Plant Cell Signaling, Plant Cell, 2002, vol. 14, pp. S355–S373.PubMedGoogle Scholar
  3. 3.
    The Arabidopsis Genome Initiative, Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana, Nature, 2000, vol. 408, pp. 796–815.Google Scholar
  4. 4.
    Lin, Y.K., Wang, Y.L., Zhu, J.K., and Yang, Z.B., Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes, Plant Cell, 1996, vol. 8, pp. 293–303.PubMedCrossRefGoogle Scholar
  5. 5.
    Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., and Chua, N.H., Rac Homologues and Compartmentalized Phosphatidylinositol 4,5-Bisphosphate Act in a Common Pathway to Regulate Polar Pollen Tube Growth, J. Cell Biol., 1999, vol. 145, pp. 317–330.PubMedCrossRefGoogle Scholar
  6. 6.
    Couchy, I., Minic, Z., Laporte, J., Brown, S., and Satiat-Jeunemaitre, B., Immunodetection of Rho-Like Plant Proteins with Rac1 and Cdc42Hs Antibodies, J. Exp. Bot., 1998, vol. 49, pp. 1647–1659.CrossRefGoogle Scholar
  7. 7.
    Zheng, Z.-L. and Yang, Z.B., The Rop GTPase Switch Turns on Polar Growth in Pollen, Trends Plant Sci., 2000, vol. 5, pp. 298–303.PubMedCrossRefGoogle Scholar
  8. 8.
    Trotochaud, A.E., Hao, T., Wu, G., Yang, Z.B., and Clark, S.E., The CLfAVATA1 Receptor-Like Kinase Requires CLAVATA3 for Its Assembly into a Signaling Complex That Includes KAPP and a Rho-Related Protein, Plant Cell, 1999, vol. 11, pp. 393–405.PubMedCrossRefGoogle Scholar
  9. 9.
    Bischoff, F., Vahlkamp, L., Molendijk, A., and Palme, K., Localization of AtROP4 and AtROP6 and Interaction with the Guanine Nucleotide Dissociation Inhibitor AtRhoGDI1 from Arabidopsis, Plant Mol. Biol., 2000, vol. 42, pp. 515–530.PubMedCrossRefGoogle Scholar
  10. 10.
    Borg, S., Podenphant, L., Jensen, T.J., and Poulsen, C., Plant Cell Growth and Differentiation May Involve GAP Regulation of Rac Activity, FEBS Lett., 1999, vol. 453, pp. 341–345.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu, G., Li, H., and Yang, Z., Arabidopsis RopGAPs Are a Novel Family of Rho GTPase-Activating Proteins That Require the Cdc42/Rac-Interactive Binding Motif for Rop-Specific GTPase Stimulation; Plant Physiol., 2000, vol. 124, pp. 1625–1636.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu, G., Gu, Y., Li, S.D., and Yang, Z.-B., A Genome-Wide Analysis of Arabidopsis Rop-Interactive CRIB Motif-Containing Proteins That Act as Rop GTPase Targets, Plant Cell, 2001, vol. 13, pp. 2841–2856.PubMedCrossRefGoogle Scholar
  13. 13.
    Li, H., Lin, Y.K., Heath, R.M., Zhu, M.X., and Yang, Z.B., Control of Pollen Tube Tip Growth by a Rop GTPase-Dependent Pathway That Leads to Tip-Loca-lized Calcium Influx, Plant Cell, 1999, vol. 11, pp. 1731–1742.PubMedCrossRefGoogle Scholar
  14. 14.
    Zheng, Z.-L. and Yang, Z.B., The Rop GTPase: An Emerging Signaling Switch in Plants, Plant Mol. Biol., 2000, vol. 44, pp. 1–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Valster, A.H., Hepler, P.K., and Chernoff, J., Plant GTPases: The Rhos in Bloom, Trends Cell Biol., 2000, vol. 10, pp. 141–146.PubMedCrossRefGoogle Scholar
  16. 16.
    Xia, G., Ramachandran, S., Hong, Y., Chan, Y.S., Simanis, V., and Chua, N.H., Identification of Plant Cytoskeletal, Cell Cycle-Related and Polarity-Related Proteins Using Schizosaccharomyces pombe, Plant J., 1996, vol. 10, pp. 761–769.PubMedCrossRefGoogle Scholar
  17. 17.
    Li, H., Wu, G., Ware, D., Davis, K.R., and Yang, Z.B., Arabidopsis Rho-Related GTPases: Differential Gene Expression in Pollen and Polar Localization in Fission Yeast, Plant Physiol., 1998, vol. 118, pp. 407–417.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin, Y.K. and Yang, Z.B., Inhibition of Pollen Tube Elongation by Microinjected Anti-Rop1Ps Antibodies Suggests a Crucial Role for Rho-Type GTPases in the Control of Tip Growth, Plant Cell, 1997, vol. 9, pp. 1647–1659.PubMedCrossRefGoogle Scholar
  19. 19.
    Kost, B., Spielhofer, P., and Chua, N.H., A GFP-Mouse Talin Fusion Protein Labels Plant Actin Filaments In Vivo and Visualizes the Actin Cytoskeleton in Growing Pollen Tubes, Plant J, 1998, vol. 16, pp. 393–401.PubMedCrossRefGoogle Scholar
  20. 20.
    Malho, R., Role of 1,4,5-Inositol Triphosphate-Induced Ca2+ Release in Pollen Tube Orientation, Sex. Plant Reprod., 1998, vol. 11, pp. 231–235.CrossRefGoogle Scholar
  21. 21.
    Chen, C.Y.H., Cheung, A.Y., and Wu, H.M., Actin-Depolymerizing Factor Mediates Rac/Rop GTPase-Regulated Pollen Tube Growth, Plant Cell, 2003, vol. 15, pp. 237–249.PubMedCrossRefGoogle Scholar
  22. 22.
    Barlow, P.W. and Baluška, F., Cytokeletal Perspectives on Root Growth and Morphogenesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 289–322.PubMedCrossRefGoogle Scholar
  23. 23.
    Molendijk, A.J., Bischoff, F., Rajendrakumar, C.S.V., Friml, J., Braun, M., Gilroy, S., and Palme, K., Arabidopsis thaliana Rop GTPases Are Localized to Tips of Root Hairs and Control Polar Growth, EMBO J., 2001, vol. 20, pp. 2779–2788.PubMedCrossRefGoogle Scholar
  24. 24.
    Jones, M.A., Shen, J.J., Fu, Y., Li, H., Yang, Z.B., and Grierson, C.S., The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth, Plant Cell, 2002, vol. 14, pp. 763–776.PubMedCrossRefGoogle Scholar
  25. 25.
    Bibikova, T.N., Blancaflor, E.B., and Gilroy, S., Microtubules Regulate Tip Growth and Orientation in Root Hairs of Arabidopsis thaliana, Plant J., 1999, vol. 17, pp. 657–665.PubMedCrossRefGoogle Scholar
  26. 26.
    Martin, C., Bhatt, K., and Baumann, K., Shaping in Plant Cells, Curr. Opin. Cell Biol., 2001, vol. 4, pp. 540–549.Google Scholar
  27. 27.
    Schindelman, G., Morikami, A., Jung, J., Baskin, T.I., Carpita, N.C., Derbyshire, P., McCann, M.C., and Benfey, P.N., COBRA Encodes a Putative GPI-Anchored Protein, Which Is Polarly Localized and Necessary for Oriented Cell Expansion in Arabidopsis, Genes Dev., 2001, vol. 15, pp. 1115–1127.PubMedCrossRefGoogle Scholar
  28. 28.
    Fu, Y., Li, H., and Yang, Z.B., The Rop2 GTPase Controls the Formation of Cortical Fine F-Actin and the Early Phase of Directional Cell Expansion during Arabidopsis Organogenesis, Plant Cell, 2002, vol. 14, pp. 777–794.PubMedCrossRefGoogle Scholar
  29. 29.
    Fu, Y., Wu, G., and Yang, Z.B., Rop GTPase-Dependent Dynamics of Tip-Localized F-Actin Controls Tip Growth in Pollen Tubes, J. Cell Biol., 2001, vol. 152, pp. 1019–1032.PubMedCrossRefGoogle Scholar
  30. 30.
    Sagi, M. and Fluhr, R., Superoxide Production by Plant Homologues of the gp91phox NADPH Oxidase. Modulation of Activity by Calcium and by Tobacco Mosaic Virus, Plant Physiol., 2001, vol. 126, pp. 1281–1290.PubMedCrossRefGoogle Scholar
  31. 31.
    Kawasaki, T., Henmi, K., Ono, E., Hatakeyama, S., Iwano, M., Satoh, H., and Shimamoto, K., The Small GTP-Binding Protein Rac Is a Regulator of Cell Death in Plants, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 10922–10926.PubMedCrossRefGoogle Scholar
  32. 32.
    Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P., and Levine, A., The Involvement of Hydrogen Peroxide in the Differentiation of Secondary Walls in Cotton Fibers, Plant Physiol., 1999, vol. 119, pp. 849–858.PubMedCrossRefGoogle Scholar
  33. 33.
    Park, J., Choi, H.T., Lee, S., Lee, T., Yang, Z.B., and Lee, Y., Rac-Related GTP-Binding Protein in Elicitor-Induced Reactive Oxygen Generation by Suspension-Cultured Soybean Cells, Plant Physiol., 2000, vol. 124, pp. 725–732.PubMedCrossRefGoogle Scholar
  34. 34.
    Baxter-Burrell, A., Yang, Z.B., Springer, P.S., and Bailey-Serres, J., RopGAP4-Dependent Rop GTPase Rheostat Control of Arabidopsis Oxygen Deprivation Tolerance, Science, 2002, vol. 296, pp. 2026–2028.PubMedCrossRefGoogle Scholar
  35. 35.
    Clark, S.E., Williams, R.W., and Meyerowitz, E.M., The CLAVATA1 Gene Encodes a Putative Receptor Kinase That Controls Shoot and Floral Meristem Size in Arabidopsis, Cell, 1997, vol. 89, pp. 575–585.PubMedCrossRefGoogle Scholar
  36. 36.
    Fletcher, L.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M., Signaling of Cell Fate Decisions by CLAVATA3 in Arabidopsis Shoot Meristems, Science, 1999, vol. 283, pp. 1911–1914.PubMedCrossRefGoogle Scholar
  37. 37.
    Trotochaud, A.E., Jeong, S., and Clark, S.E., CLAVATA3, a Multimeric Ligand for the CLAVATA1 Receptor-Kinase, Science, 2000, vol. 289, pp. 613–617.PubMedCrossRefGoogle Scholar
  38. 38.
    Li, H., Shen, J.J., Zheng, Z.L., Lin, Y.K., and Yang, Z.B., The Rop GTPase Switch Controls Multiple Developmental Processes in Arabidopsis, Plant Physiol., 2001, vol. 126, pp. 670–684.PubMedCrossRefGoogle Scholar
  39. 39.
    Lemichez, E., Wu, Y., Sanchez, J.P., Mettouchi, A., Mathur, J., and Chua, N.H., Inactivation of AtRac1 by Abscisic Acid Is Essential for Stomatal Closure, Genes Dev., 2001, vol. 15, pp. 1808–1816.PubMedCrossRefGoogle Scholar
  40. 40.
    Homann, U. and Thiel, G., Unitary Exocytotic and Endocytotic Events in Guard-Cell Protoplasts during Osmotically Driven Volume Changes, FEBS Lett., 1999, vol. 460, pp. 495–499.PubMedCrossRefGoogle Scholar
  41. 41.
    Zheng, Z.-L., Nafisi, M., Tam, A., Li, H., Crowell, D.N., Chary, S.N., Schroeder, J.I., Shen, J.J., and Yang, Z.B., Plasma Membrane-Associated ROP10 Small GTPase Is a Specific Negative Regulator of Abscisic Acid Responses in Arabidopsis, Plant Cell, 2002, vol. 14, pp. 2787–2797.PubMedCrossRefGoogle Scholar
  42. 42.
    Ephritikhine, G., Pagant, S., Fujioka, S., Takatsuto, S., Lapous, D., Caboche, M., Kendrick, R.E., and Barbier-Brygoo, H., The sax1 Mutation Defines a New Locus Involved in the Brassinosteroid Biosynthesis Pathway in Arabidopsis thaliana, Plant J., 1999, vol. 18, pp. 315–320.PubMedCrossRefGoogle Scholar
  43. 43.
    Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J., Interactions between Abscisic Acid and Ethylene Signaling Cascades, Plant Cell, 2000, vol. 12, pp. 1103–1115.PubMedCrossRefGoogle Scholar
  44. 44.
    Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., and McCourt, P., Regulation of Abscisic Acid Signaling by the Ethylene Response Pathway in Arabidopsis, Plant Cell, 2000, vol. 12, pp. 1117–1126.PubMedCrossRefGoogle Scholar
  45. 45.
    Finkelstein, R.R., Gampala, S.S.L., and Rock, C.D., Abscisic Acid Signaling in Seeds and Seedlings, Plant Cell, 2002, vol. 14, pp. S15–S45.PubMedGoogle Scholar
  46. 46.
    Tao, L.Z., Cheung, A.Y., and Wu, H.M., Plant Rac-Like GTPases Are Activated by Auxin and Mediate Auxin-Responsive Gene Expression, Plant Cell, 2002, vol. 14, pp. 2745–2760.PubMedCrossRefGoogle Scholar
  47. 47.
    Mizoguchi, T., Gotoh, Y., Nishida, E., Yamaguchi-Shinozaki, K., Hayashida, N., Iwasaki, T., Kamada, H., and Shinozaki, K., Characterization of Two cDNAs That Encode MAP Kinase Homologues in Arabidopsis thaliana and Analysis of the Possible Role of Auxin in Activating Such Kinase Activities in Cultured Cells, Plant J., 1994, vol. 5, pp. 111–122.PubMedCrossRefGoogle Scholar
  48. 48.
    Kovtun, Y., Chiu, W.L., Zeng, W.K., and Sheen, J., Suppression of Auxin Signal Transduction by a MAPK Cascade in Higher Plants, Nature, 1998, vol. 395, pp. 716–720.PubMedCrossRefGoogle Scholar
  49. 49.
    Mockaitis, K. and Howel, S.H., Auxin Induces Mitogenic Activated Protein Kinase (MAPK) Activation in Roots of Arabidopsis Seedlings, Plant J., 2000, vol. 24, pp. 785–796.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Timiryazev Institute of Plant PhysialogyRussian Academy of SciencesMoscowRussia

Personalised recommendations