Skip to main content
Log in

Identification of two markers linked to the sex locus in dioecious Asparagus officinalis plants

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

One hundred decamer primers of random-amplified polymorphic DNA were tested on dioecious Asparagus officinalis plants to identify sex-linked molecular markers. One primer (S368) produced two markers (S368-928 and S368-1178) in female plants. These two DNA markers were identified in 30 male and female plants, respectively, and a S368-928 marker was proved to be linked to the female sex locus. The female-linked S368-928 marker was sequenced and specific primers were synthesized to generate a 928 bp marker of sequence characterized amplified regions (SCAR) in female plants, SCAR928. SCAR928 could be used to correctly screen homozygous mm female plants of A. officinalis. However, results of Southern blot analysis suggest that the hybridization pattern of S368-928 was presented in both sex plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bulk segregant analysis

MAS:

marker assisted selection

PCR:

polymerase chain reaction

RAPD:

random-amplified polymorphic DNA

SCAR:

sequence characterized amplified regions

SSC:

sodium chloride-sodium citrate

References

  1. Bennett, M.D. and Leitch, I.J., Plant DNA C-Values Database (release 2,0, January, 2003), 2003, http://www.rbgkew.org.uk/cval/homepage.html.

  2. Flory, W.S., Genetic and Cytological Investigations on Asparagus officinalis L., Genet. Princeton, 1932, vol. 17, pp. 432–467.

    CAS  Google Scholar 

  3. Uno, Y., Li, Y., Kanechi, M., and Inagaki, N., Haploid Production from Polyembryonic Seeds of Asparagus officinalis L., Acta Hortic., 2002, vol. 589, pp. 2002–2007.

    Google Scholar 

  4. Löptien, H., Identification of the Sex Chromosome Pair in Asparagus (Asparagus officinalis L.), Z. Pflanzenzucht., 1979, vol. 82, pp. 162–173.

    Google Scholar 

  5. Paran, I. and Michelmore, R.W., Development of Reliable PCR Based Markers Linked to Downy Mildew Resistance Genes in Lettuce, Theor. Appl. Genet., 1993, vol. 85, pp. 985–993.

    Article  CAS  Google Scholar 

  6. John, W. and Michael, M., Fingerprinting Genomes Using PCR with Arbitrary Primers, Nucleic Acids Res., 1990, vol. 18, pp. 7213–7218.

    Article  Google Scholar 

  7. Williams, J.G., Kubelik, A.R., Livac, K.J., Rafalski, J.A., and Tingey, S.V., DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers, Nucleic Acids Res., 1990, vol. 18, pp. 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, J.J. and Kuo, J., AFLP™: A Novel PCR-Based Assay for Plant and Bacterial DNA Fingerprinting, Focus, 1995, vol. 17, pp. 52–56.

    Google Scholar 

  9. Powell, W., Machray G.C., and Provan, J., Polymorphism Revealed by Simple Sequence Repeats, Trends Plant Sci., 1996, vol. 1, pp. 215–222.

    Google Scholar 

  10. Michelmore, R.W., Paran, I., and Kesseli, R.V., Identification of Markers Linked to Disease Resistance Genes by Bulk Segregant Analysis: A Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, Y.H., di Stilio, V., Rehman, F., Tucker, A., Mulcahy, D., and Kesseli, R., Y-Chromosome Specific Markers and the Evolution of Dioecy in the Genus Silene, Genome, 1998, vol. 41, pp. 141–147.

    Article  CAS  Google Scholar 

  12. Mulcahy, D.L. and Weeden, N.F., DNA Probes for the Y-Chromosome of Silene latifolia, a Dioecious Angiosperm, Sex. Plant Reprod., 1992, pp. 86–88.

  13. Yakubov, B., Barazani, O., and Golan-Goldhirsh, A., Combination of SCAR Primers and Touchdown-PCR for Sex Identification in Pistacia vera L., Sci. Hortic., 2005, vol. 103, pp. 473–478.

    Article  CAS  Google Scholar 

  14. Ottĭ, T., Năndor, B., Erzsěbet, K., Hajnalka, H., Zsuzsanna, F.K., Ivăn, B., Istvăn, N., and Lăszlĭ, E.H., Novel Male-Specific Molecular Markers (MADC5, MADC6) in Hemp, Euphytica, 2002, vol. 127, pp. 209–218.

    Article  Google Scholar 

  15. Polley, E., Seigner, E., and Ganal, M.W., Identification of Sex in Hop (Humulus lupulus) Using Molecular Markers, Genome, 1997, vol. 40, pp. 357–361.

    Article  CAS  PubMed  Google Scholar 

  16. Gill, G.P., Harvey, C.F., Gardner, R.C., and Fraser, L.G., Development of Sex-Linked PCR Markers for Gender Identification in Actinidia, Theor. Appl. Genet., 1998, vol. 97, pp. 439–445.

    Article  CAS  Google Scholar 

  17. Ruas, F., Fairbanks, D.J., Evans, R.P., Stutz, H.C., Andersen, W.R., and Ruas, P.M., Male-Specific DNA in the Dioecious Species Atriplex garrettii (Chenopodiaceae), Am. J. Bot., 1998, vol. 85, pp. 162–167.

    Article  CAS  Google Scholar 

  18. Urasaki, N., Tokumoto, M., Tarora, K., Ban, Y., Kayano, T., Tanaka, H., Oku, H., Chinen, I., and Terauchi, R., A Male and Hermaphrodite Specific RAPD Marker for Papaya (Carica papaya L.), Theor. Appl. Genet., 2002, vol. 104, pp. 281–285.

    Article  PubMed  CAS  Google Scholar 

  19. Gunter, L.E., Roberts, G.T., Lee, K., Larimer, F.W., and Tuskan, G.A., The Development of Two Flanking SCAR Markers Linked to a Sex Determination Locus in Salix viminalis L., J. Hered., 2003, vol. 94, pp. 185–189.

    Article  PubMed  CAS  Google Scholar 

  20. Helena, K., A Genetic Method to Resolve Gender Complements Investigations on Sex Ratios in Rumex acetosa, Mol. Ecol., 2002, vol. 11, pp. 2151–2156.

    Article  Google Scholar 

  21. Khadka, D.K., Nejidat, A., Tal, M., and Golan-Goldhirsh, A., DNA Markers for Sex: Molecular Evidence for Gender Dimorphism in Dioecious Mercurialis annua L., Mol. Breed., 2002, vol. 9, pp. 251–257.

    Article  CAS  Google Scholar 

  22. Xu Wen-Jie, Wang Bing-Wu, and Cui Ke-Ming, RAPD and SCAR Markers Linked to Sex Determination in Eucommia ulmoides Oliv, Euphytica, 2004, vol. 136, pp. 233–238.

    Article  CAS  Google Scholar 

  23. Doyle, J.J. and Doyle, J.L., A Rapid Isolation Procedure for Small Quantities of Fresh Leaf Tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.

    Google Scholar 

  24. Richard, C.M., Olga, K., Sabine, L.H., Jiri, S., Roman, H., Boris, V., and Sarah, R.G., Genetic and Functional Analysis of DD44, a Sex-Linked Gene from the Dioecious Plant Silene latifolia, Provides Clues to Early Events in Sex Chromosome Evolution, Genetics, 2003, vol. 163, pp. 321–334.

    Google Scholar 

  25. Maestri, E., Restivo, F.M., Marziani-Longo, G.P., Falavigna, A., and Tassi, F., Isozyme Gene Markers in the Dioecious Species Asparagus officinalis L., Theor. Appl. Genet., 1991, vol. 81, pp. 613–618.

    Article  CAS  Google Scholar 

  26. Lorraine, A., Sheppard, A.M., Brunner, K.V., Krutovskii, W.H., Rottmann, J.S.S., Sheila, S.V., and Steven, H.S., A DEFICIENS Homolog from the Dioecious Tree Black Cottonwood Is Expressed in Female and Male Floral Meristems of the Two-Whorled, Unisexual Flowers, Plant Physiol., 2000, vol. 124, pp. 627–639.

    Article  Google Scholar 

  27. Yamasaki, S., Fujii, N., and Takahashi, H., The Ethylene Regulated Expression of CS-ETR2 and CS-ERS Genes in Cucumber Plants and Their Possible Involvement with Sex Expression in Flowers, Plant Cell Physiol., 2000, vol. 41, pp. 608–616.

    PubMed  CAS  Google Scholar 

  28. Chailakhyan, M.Kh. and Khryanin, V.N., The Role of Roots in Sex Expression in Hemp Plants, Planta, 1978, vol. 138, pp. 185–187.

    Article  Google Scholar 

  29. Khryanin, V.N., Role of Phytohormones in Sex Differentiation in Plants, Russ. J. Plant Physiol., 2002, vol. 49, pp. 545–551.

    Article  CAS  Google Scholar 

  30. Jiang, C. and Sink, K.C., RAPD and SCAR Markers Linked to the Sex Expression Locus M in Asparagus, Euphytica, 1997, vol. 94, pp. 329–333.

    Article  CAS  Google Scholar 

  31. Reamon-Büttner, S.M., Schondelmaier, J., and Jung, C., AFLP Markers Tightly Linked to the Sex Locus in Asparagus officinalis L., Mol. Breed., 1998, vol. 4, pp. 91–98.

    Article  Google Scholar 

  32. Reamon-Büttner, S.M. and Jung, C., AFLP-Derived STS Markers for the Identification of Sex in Asparagus officinalis L., Theor. Appl. Genet., 2000, vol. 100, pp. 432–438.

    Article  Google Scholar 

  33. Grant, S., Houben, A., Viskot, B., Siroky, J., Pan, W., Macas, J., and Saedler, H., Genetics of Sex Determination in Flowering Plants, Dev. Gen., 1994, vol. 15, pp. 214–230.

    Article  Google Scholar 

  34. Clark, M.S., Parker, J.S., and Ainsworth, C.A., Repeated DNA and Heterochromatin Structure in Rumex acetosa, Heredity, 1993, vol. 70, pp. 527–536.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Gao.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, W.J., Li, R.L., Li, S.F. et al. Identification of two markers linked to the sex locus in dioecious Asparagus officinalis plants. Russ J Plant Physiol 54, 816–821 (2007). https://doi.org/10.1134/S1021443707060143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707060143

Key words

Navigation