Skip to main content
Log in

Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Potato (Solanum tuberosum L.) plants were transformed with the desA gene encoding Δ12 acyl-lipid desaturase in the cyanobacterium Synechocystis sp. PCC 6803. To evaluate the efficiency of this gene expression in the plant, its sequence was translationally fused with the sequence of the reporter gene encoding thermostable lichenase. A comparison of native and hybrid gene expression showed that lichenase retained its activity and thermostability within the hybrid protein, whereas desaturase retained its capability of inserting the double bond in fatty acid (FA) chains and, thus, to modify their composition in membrane lipids. In most transformed plants, shoots contained higher amounts of polyunsaturated FAs, linoleic and linolenic (by 39–73 and 12–41%, respectively). The total absolute content of unsaturated FAs was also higher in transformants by 20–42% as compared to wild-type plants. When transformed plants were severely cooled (to −7°C), the rate of their membrane lipid peroxidation was not enhanced, whereas in wild-type plants, it increased substantially (by 25%) under such conditions. These results could indicate a higher tolerance of transformed plants to low temperatures and the oxidative stress induced by hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACP:

acyl-carrier protein

CaMV:

cauliflower mosaic virus

FA:

fatty acid

FAME:

FA methyl ester

MDA:

malondialdehyde

MS:

Murashige and Skoog nutrient medium

POL:

peroxidation of lipids

ROS:

reactive oxygen species

References

  1. Somerville, C. and Browse, J., Plant Lipids: Metabolism, Mutants, and Membranes, Science, 1991, vol. 252, pp. 80–87.

    Article  PubMed  CAS  Google Scholar 

  2. Hamada, T., Kodama, H., Nishimura, M., and Iba, K., Modification of Fatty Acid Composition by Over-and Antisense-Expression of a Microsomal ω-3 Fatty Acid Desaturase Gene in Transgenic Tobacco, Transgen. Res., 1996, vol. 5, pp. 115–121.

    Article  CAS  Google Scholar 

  3. Osamu, M. and Iba, K., Trienoic Fatty Acids and Stress Responses in Higher Plants, Plant Biotechnol., 2005, vol. 22, pp. 423–430.

    Google Scholar 

  4. Thompson, J.A., Membrane Acclimation by Unicellular Organisms in Response to Temperature Change, J. Bioenerg. Biomembr., 1989, vol. 21, pp. 43–60.

    Article  PubMed  CAS  Google Scholar 

  5. Davis, P.J., Fleming, B.D., Coolbear, K.P., and Keough, K.M.W., Gel to Liquid Crystalline Transition Temperatures of Water Dispersions of Two Pairs of Positional Isomers of Unsaturated Mixed-Acid Phosphatidylcholines, Biochemistry, 1981, vol. 20, pp. 3633–3636.

    Article  PubMed  CAS  Google Scholar 

  6. Los, D.A. and Murata, N., Membrane Fluidity and Its Roles in the Perception of Environmental Signals, Biochim. Biophys. Acta, 2004, vol. 1666, pp. 142–157.

    PubMed  CAS  Google Scholar 

  7. Los, D.A. and Murata, N., Structure and Expression of Fatty Acid Desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, pp. 3–15.

    PubMed  CAS  Google Scholar 

  8. Wada, H., Gombos, Z., and Murata, N., Enhancement of Chilling Tolerance of a Cyanobacterium by Genetic Manipulation of Fatty Acid Desaturation, Nature, 1990, vol. 347, pp. 200–203.

    Article  PubMed  CAS  Google Scholar 

  9. Goldenkova, I.V., Reporter Systems: Possibilities for Investigation of Various Aspects of Gene Expression Regulation, Usp. Sovrem. Biol., 2002, vol. 122, pp. 515–526.

    CAS  Google Scholar 

  10. Goldenkova, I.V., Musiichuk, K.A., and Piruzyan, E.S., Bifunctional Reporter Genes: Construction and Expression in Pro-and Eukaryote Cells, Mol. Biol. (Moscow), 2003, vol. 37, pp. 1–9.

    Article  Google Scholar 

  11. Maniatis, T., Frisch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982. Translated under the title Metody geneticheskoi ingenerii. Molekulyarnoe klonirovanie, Moscow: Mir, 1984.

    Google Scholar 

  12. Lazo, G.R., Stein, P.A., and Ludwig, R.A., A DNA Transformation-Competent Arabidopsis Genomic Library in Agrobacterium, Agrobacterium Biotechnol., 1991, vol. 9, pp. 963–967.

    CAS  Google Scholar 

  13. Deryabin, A.N., Yur’eva, N.O., Oreshnikov, A.V., and Butenko, R.G., In vitro Potato Stolon Growth and Induction of Microtubers under Various Culturing Regimes, Dokl. Akad. Nauk, 1997, vol. 355, pp. 841–843.

    CAS  Google Scholar 

  14. Van Lijsebettens, M. and Valvekense, D., Tobacco Leaf Disk Infection with Agrobacterium tumefaciens, EMBO Practical Course on Plant Molecular Biology, Gent (Belgium), 1987, pp. 15–18.

  15. Sotchenkov, D.V., Goldenkova, I.V., Mirakholi, N., and Volkova, L.V., Modification of Gene SD2 Sequence in Sunflower and Its Expression in Bacterial and Yeast Cells, Genetika, 2005, vol. 41, pp. 1453–1461.

    PubMed  CAS  Google Scholar 

  16. Tsydendambaev, V.D. and Vereshchagin, A.G. Investigation of Lipids in Sugar Beet Roots and Sugar Accumulation: 2. Extractability of Acyl-Containing Lipids in Parenchyma of Dormant Roots, Sov. Plant Physiol., 1980, vol. 27, pp. 778–784.

    CAS  Google Scholar 

  17. Vereshchagin, A.G., Lebedeva, N.I., and Zhukov, A.V., Content and Composition of Etherified Fatty Acids in Mitochondria of Etiolated Wheat Seedlings, Sov. Plant Physiol., 1985, vol. 32, pp. 124–129.

    CAS  Google Scholar 

  18. Pchelkin, V.P., Kuznetsova, E.I., Tsydendambaev, V.D., and Vereshchagin, A.G., Determination of the Positional-Species Composition of Plant Reserve Triacylglycerols by Partial Chemical Deacylation, Russ. J. Plant Physiol., 2001, vol. 48, pp. 701–707.

    Article  CAS  Google Scholar 

  19. Zhukov, A.V. and Vereshchagin, A.G., The Apparatus for Quantitative Extraction of Lipids from Plant Material, Sov. Plant Physiol., 1974, vol. 21, pp. 659–674.

    CAS  Google Scholar 

  20. Zhirov, V.K., Merzlyak, M.N., and Kuznetsov, L.V., Peroxidation of Membrane Lipids in Cold-Resistant Plants Damaged by Below-Zero Temperature, Sov. Plant Physiol., 1982, vol. 29, pp. 1045–1052.

    CAS  Google Scholar 

  21. Herbers, K. and Sonnewald, U., Production of New/Modified Proteins in Transgenic Plants, Curr. Opin. Biotechnol., 1999, vol. 10, pp. 163–168.

    Article  PubMed  CAS  Google Scholar 

  22. Fiedler, U. and Conrad, U., High-Level Production and Long-Term Storage of Engineered Antibodies in Transgenic Tobacco Seeds, Biotechnology, 1995, vol. 13, pp. 1090–1093.

    Article  PubMed  CAS  Google Scholar 

  23. Mongrand, S., Bessoule, J.-J., Cabantous, F., and Cassagne, C., The C-16:3/C-18:3 Fatty Acid Balance in Photosynthetic Tissues from 468 Plant Species, Phytochemistry, 1998, vol. 49, pp. 1049–1064.

    Article  CAS  Google Scholar 

  24. Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K., Murata, N., Ohtani, T., and Toguri, T., Low-Temperature Resistance of Higher Plants Is Significantly Enhanced by a Nonspecific Cyanobacterial Desaturase, Nature Biotech., 1996, vol. 14, pp. 1003–1006.

    Article  CAS  Google Scholar 

  25. Orlova, I.V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los, D.A., Transformation of Tobacco with a Gene for the Thermophilic Acyl-Lipid Desaturase Enhances the Chilling Tolerance of Plants, Plant Cell Physiol., 2003, vol. 44, pp. 447–450.

    Article  PubMed  CAS  Google Scholar 

  26. Popov, V.N., Orlova, I.V., Kipaikina, N.V., Serebriiskaya, T.S., Merkulova, N.V., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los, D.A., The Effect of Tobacco Plant Transformation with a Gene for Acyl-Lipid Δ9-Desaturase from Synechococcus vulcanus on Plant Chilling Tolerance, Russ. J. Plant Physiol., 2005, vol. 52, pp. 664–668.

    Article  CAS  Google Scholar 

  27. Murata, N., Wada, H., and Gombos, Z., Modes of Fatty Acid Desaturation in Cyanobacteria, Plant Cell Physiol., 1992, vol. 33, pp. 933–941.

    CAS  Google Scholar 

  28. Higashi, S. and Murata, N., An in vivo Study of Substrate Specificities of Acyl-Lipid Desaturases and Acyl-Transferases in Lipid Synthesis in Synechocyctis PCC6803, Plant Physiol., 1993, vol. 102, pp. 1275–1278.

    PubMed  CAS  Google Scholar 

  29. Peyou-Ndi, M.M., Watts, J.L., and Browse, J., Identification and Characterization of an Animal Δ12 Fatty Acid Desaturase Gene by Heterologous Expression in Saccharomyces cerevisiae, Arch. Biochem. Biophys., 2000, vol. 376, pp. 399–408.

    Article  PubMed  CAS  Google Scholar 

  30. Tasaka, Y., Gombos, Z., Nishiyama, Y., Mohanty, P., Ohba, T., Ohki, K., and Murata, N., Targeted Mutagenesis of Acyl-Lipid Desaturases in Synechocystis: Evidence for the Important Roles of Polyunsaturated Membrane Lipids in Growth, Respiration and Photosynthesis, EMBO J., 1996, vol. 15, pp. 6416–6425.

    PubMed  CAS  Google Scholar 

  31. Baraboi, V.A., Mechanisms of Stress and Lipid Peroxidation, Usp. Sovrem. Biol., 1991, vol. 111, pp. 923–931.

    CAS  Google Scholar 

  32. Scandalios, J.G., Oxygen Stress and Superoxide Dismutases, Plant Physiol., 1993, vol. 101, pp. 7–12.

    PubMed  CAS  Google Scholar 

  33. Seppanen, M.M., Majaharju, M., Somersalo, S., and Pehu, E., Freezing Tolerance, Cold-Acclimation and Oxidative Stress in Potato Paraquat Tolerance Is Related to Acclimation but Is a Poor Indicator of Freezing Tolerance, Physiol. Plant., 1998, vol. 102, pp. 454–460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Maali-Amiri.

Additional information

Original Russian Text © R. Maali-Amiri, I.V. Goldenkova-Pavlova, N.O. Yur’eva, V.P. Pchelkin, V.D. Tsydendambaev, A.G. Vereshchagin, A.N. Deryabin, T.I. Trunova, D.A. Los, A.M. Nosov, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 5, pp. 678–685.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maali-Amiri, R., Goldenkova-Pavlova, I.V., Yur’eva, N.O. et al. Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium. Russ J Plant Physiol 54, 600–606 (2007). https://doi.org/10.1134/S1021443707050056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707050056

Key words

Navigation