Russian Journal of Plant Physiology

, Volume 54, Issue 5, pp 600–606 | Cite as

Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium

  • R. Maali-AmiriEmail author
  • I. V. Goldenkova-Pavlova
  • N. O. Yur’eva
  • V. P. Pchelkin
  • V. D. Tsydendambaev
  • A. G. Vereshchagin
  • A. N. Deryabin
  • T. I. Trunova
  • D. A. Los
  • A. M. Nosov
Research Papers


Potato (Solanum tuberosum L.) plants were transformed with the desA gene encoding Δ12 acyl-lipid desaturase in the cyanobacterium Synechocystis sp. PCC 6803. To evaluate the efficiency of this gene expression in the plant, its sequence was translationally fused with the sequence of the reporter gene encoding thermostable lichenase. A comparison of native and hybrid gene expression showed that lichenase retained its activity and thermostability within the hybrid protein, whereas desaturase retained its capability of inserting the double bond in fatty acid (FA) chains and, thus, to modify their composition in membrane lipids. In most transformed plants, shoots contained higher amounts of polyunsaturated FAs, linoleic and linolenic (by 39–73 and 12–41%, respectively). The total absolute content of unsaturated FAs was also higher in transformants by 20–42% as compared to wild-type plants. When transformed plants were severely cooled (to −7°C), the rate of their membrane lipid peroxidation was not enhanced, whereas in wild-type plants, it increased substantially (by 25%) under such conditions. These results could indicate a higher tolerance of transformed plants to low temperatures and the oxidative stress induced by hypothermia.

Key words

Solanum tuberosum transformed plants acyl-lipid desaturase FA cold tolerance 



acyl-carrier protein


cauliflower mosaic virus


fatty acid


FA methyl ester




Murashige and Skoog nutrient medium


peroxidation of lipids


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Somerville, C. and Browse, J., Plant Lipids: Metabolism, Mutants, and Membranes, Science, 1991, vol. 252, pp. 80–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Hamada, T., Kodama, H., Nishimura, M., and Iba, K., Modification of Fatty Acid Composition by Over-and Antisense-Expression of a Microsomal ω-3 Fatty Acid Desaturase Gene in Transgenic Tobacco, Transgen. Res., 1996, vol. 5, pp. 115–121.CrossRefGoogle Scholar
  3. 3.
    Osamu, M. and Iba, K., Trienoic Fatty Acids and Stress Responses in Higher Plants, Plant Biotechnol., 2005, vol. 22, pp. 423–430.Google Scholar
  4. 4.
    Thompson, J.A., Membrane Acclimation by Unicellular Organisms in Response to Temperature Change, J. Bioenerg. Biomembr., 1989, vol. 21, pp. 43–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Davis, P.J., Fleming, B.D., Coolbear, K.P., and Keough, K.M.W., Gel to Liquid Crystalline Transition Temperatures of Water Dispersions of Two Pairs of Positional Isomers of Unsaturated Mixed-Acid Phosphatidylcholines, Biochemistry, 1981, vol. 20, pp. 3633–3636.PubMedCrossRefGoogle Scholar
  6. 6.
    Los, D.A. and Murata, N., Membrane Fluidity and Its Roles in the Perception of Environmental Signals, Biochim. Biophys. Acta, 2004, vol. 1666, pp. 142–157.PubMedGoogle Scholar
  7. 7.
    Los, D.A. and Murata, N., Structure and Expression of Fatty Acid Desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, pp. 3–15.PubMedGoogle Scholar
  8. 8.
    Wada, H., Gombos, Z., and Murata, N., Enhancement of Chilling Tolerance of a Cyanobacterium by Genetic Manipulation of Fatty Acid Desaturation, Nature, 1990, vol. 347, pp. 200–203.PubMedCrossRefGoogle Scholar
  9. 9.
    Goldenkova, I.V., Reporter Systems: Possibilities for Investigation of Various Aspects of Gene Expression Regulation, Usp. Sovrem. Biol., 2002, vol. 122, pp. 515–526.Google Scholar
  10. 10.
    Goldenkova, I.V., Musiichuk, K.A., and Piruzyan, E.S., Bifunctional Reporter Genes: Construction and Expression in Pro-and Eukaryote Cells, Mol. Biol. (Moscow), 2003, vol. 37, pp. 1–9.CrossRefGoogle Scholar
  11. 11.
    Maniatis, T., Frisch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982. Translated under the title Metody geneticheskoi ingenerii. Molekulyarnoe klonirovanie, Moscow: Mir, 1984.Google Scholar
  12. 12.
    Lazo, G.R., Stein, P.A., and Ludwig, R.A., A DNA Transformation-Competent Arabidopsis Genomic Library in Agrobacterium, Agrobacterium Biotechnol., 1991, vol. 9, pp. 963–967.Google Scholar
  13. 13.
    Deryabin, A.N., Yur’eva, N.O., Oreshnikov, A.V., and Butenko, R.G., In vitro Potato Stolon Growth and Induction of Microtubers under Various Culturing Regimes, Dokl. Akad. Nauk, 1997, vol. 355, pp. 841–843.Google Scholar
  14. 14.
    Van Lijsebettens, M. and Valvekense, D., Tobacco Leaf Disk Infection with Agrobacterium tumefaciens, EMBO Practical Course on Plant Molecular Biology, Gent (Belgium), 1987, pp. 15–18.Google Scholar
  15. 15.
    Sotchenkov, D.V., Goldenkova, I.V., Mirakholi, N., and Volkova, L.V., Modification of Gene SD2 Sequence in Sunflower and Its Expression in Bacterial and Yeast Cells, Genetika, 2005, vol. 41, pp. 1453–1461.PubMedGoogle Scholar
  16. 16.
    Tsydendambaev, V.D. and Vereshchagin, A.G. Investigation of Lipids in Sugar Beet Roots and Sugar Accumulation: 2. Extractability of Acyl-Containing Lipids in Parenchyma of Dormant Roots, Sov. Plant Physiol., 1980, vol. 27, pp. 778–784.Google Scholar
  17. 17.
    Vereshchagin, A.G., Lebedeva, N.I., and Zhukov, A.V., Content and Composition of Etherified Fatty Acids in Mitochondria of Etiolated Wheat Seedlings, Sov. Plant Physiol., 1985, vol. 32, pp. 124–129.Google Scholar
  18. 18.
    Pchelkin, V.P., Kuznetsova, E.I., Tsydendambaev, V.D., and Vereshchagin, A.G., Determination of the Positional-Species Composition of Plant Reserve Triacylglycerols by Partial Chemical Deacylation, Russ. J. Plant Physiol., 2001, vol. 48, pp. 701–707.CrossRefGoogle Scholar
  19. 19.
    Zhukov, A.V. and Vereshchagin, A.G., The Apparatus for Quantitative Extraction of Lipids from Plant Material, Sov. Plant Physiol., 1974, vol. 21, pp. 659–674.Google Scholar
  20. 20.
    Zhirov, V.K., Merzlyak, M.N., and Kuznetsov, L.V., Peroxidation of Membrane Lipids in Cold-Resistant Plants Damaged by Below-Zero Temperature, Sov. Plant Physiol., 1982, vol. 29, pp. 1045–1052.Google Scholar
  21. 21.
    Herbers, K. and Sonnewald, U., Production of New/Modified Proteins in Transgenic Plants, Curr. Opin. Biotechnol., 1999, vol. 10, pp. 163–168.PubMedCrossRefGoogle Scholar
  22. 22.
    Fiedler, U. and Conrad, U., High-Level Production and Long-Term Storage of Engineered Antibodies in Transgenic Tobacco Seeds, Biotechnology, 1995, vol. 13, pp. 1090–1093.PubMedCrossRefGoogle Scholar
  23. 23.
    Mongrand, S., Bessoule, J.-J., Cabantous, F., and Cassagne, C., The C-16:3/C-18:3 Fatty Acid Balance in Photosynthetic Tissues from 468 Plant Species, Phytochemistry, 1998, vol. 49, pp. 1049–1064.CrossRefGoogle Scholar
  24. 24.
    Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K., Murata, N., Ohtani, T., and Toguri, T., Low-Temperature Resistance of Higher Plants Is Significantly Enhanced by a Nonspecific Cyanobacterial Desaturase, Nature Biotech., 1996, vol. 14, pp. 1003–1006.CrossRefGoogle Scholar
  25. 25.
    Orlova, I.V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los, D.A., Transformation of Tobacco with a Gene for the Thermophilic Acyl-Lipid Desaturase Enhances the Chilling Tolerance of Plants, Plant Cell Physiol., 2003, vol. 44, pp. 447–450.PubMedCrossRefGoogle Scholar
  26. 26.
    Popov, V.N., Orlova, I.V., Kipaikina, N.V., Serebriiskaya, T.S., Merkulova, N.V., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los, D.A., The Effect of Tobacco Plant Transformation with a Gene for Acyl-Lipid Δ9-Desaturase from Synechococcus vulcanus on Plant Chilling Tolerance, Russ. J. Plant Physiol., 2005, vol. 52, pp. 664–668.CrossRefGoogle Scholar
  27. 27.
    Murata, N., Wada, H., and Gombos, Z., Modes of Fatty Acid Desaturation in Cyanobacteria, Plant Cell Physiol., 1992, vol. 33, pp. 933–941.Google Scholar
  28. 28.
    Higashi, S. and Murata, N., An in vivo Study of Substrate Specificities of Acyl-Lipid Desaturases and Acyl-Transferases in Lipid Synthesis in Synechocyctis PCC6803, Plant Physiol., 1993, vol. 102, pp. 1275–1278.PubMedGoogle Scholar
  29. 29.
    Peyou-Ndi, M.M., Watts, J.L., and Browse, J., Identification and Characterization of an Animal Δ12 Fatty Acid Desaturase Gene by Heterologous Expression in Saccharomyces cerevisiae, Arch. Biochem. Biophys., 2000, vol. 376, pp. 399–408.PubMedCrossRefGoogle Scholar
  30. 30.
    Tasaka, Y., Gombos, Z., Nishiyama, Y., Mohanty, P., Ohba, T., Ohki, K., and Murata, N., Targeted Mutagenesis of Acyl-Lipid Desaturases in Synechocystis: Evidence for the Important Roles of Polyunsaturated Membrane Lipids in Growth, Respiration and Photosynthesis, EMBO J., 1996, vol. 15, pp. 6416–6425.PubMedGoogle Scholar
  31. 31.
    Baraboi, V.A., Mechanisms of Stress and Lipid Peroxidation, Usp. Sovrem. Biol., 1991, vol. 111, pp. 923–931.Google Scholar
  32. 32.
    Scandalios, J.G., Oxygen Stress and Superoxide Dismutases, Plant Physiol., 1993, vol. 101, pp. 7–12.PubMedGoogle Scholar
  33. 33.
    Seppanen, M.M., Majaharju, M., Somersalo, S., and Pehu, E., Freezing Tolerance, Cold-Acclimation and Oxidative Stress in Potato Paraquat Tolerance Is Related to Acclimation but Is a Poor Indicator of Freezing Tolerance, Physiol. Plant., 1998, vol. 102, pp. 454–460.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • R. Maali-Amiri
    • 1
    Email author
  • I. V. Goldenkova-Pavlova
    • 2
  • N. O. Yur’eva
    • 3
  • V. P. Pchelkin
    • 3
  • V. D. Tsydendambaev
    • 3
  • A. G. Vereshchagin
    • 3
  • A. N. Deryabin
    • 3
  • T. I. Trunova
    • 3
  • D. A. Los
    • 3
  • A. M. Nosov
    • 3
  1. 1.Department of Agronomy and Plant Breeding, Agricultural CollegeUniversity of TeheranTeheranIran
  2. 2.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  3. 3.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations