Skip to main content

Capacity of Spirulina platensis to accumulate manganese and its distribution in cell

Abstract

Effects of manganese salt (MnCl2) on growth of Spirulina platensis and capacity of the cyanobacteria to accumulate the metal in various cell components were studied. S. platensis cells were shown to tolerate high concentrations of manganese and preserve, although strongly suppressed, the capacity to grow in the medium containing 5.1 mM MnCl2. The concentrations of manganese that did not inhibit growth considerably altered cell ultrastructure and changed the protein profile. The accumulation of manganese in S. platensis cells was proportional to the period of culturing and manganese concentration in the medium, reaching a plateau at about 2.5 mM. A threshold intracellular concentration of this metal is estimated as 28 ± 3 μmol/g dry wt. The fractionation of the manganese-enriched biomass demonstrated that the major portion of intracellular manganese (over 90%) was found in the total protein fraction. The chromatographic separation of the soluble protein fraction showed that manganese was incorporated into proteins with molecular weight of 5 to 15 kD. Dry biomass adsorbed manganese cations; this evidence seems to indicate a considerable contribution of biosorption to manganese accumulation by S. platensis cells.

This is a preview of subscription content, access via your institution.

References

  1. Kuyucak, N. and Volesky, B., Biosorption of Alga Biomass, Boca Raton: CRC Press, 1990, pp. 174–195.

    Google Scholar 

  2. Sandau, P., Sandau, E., and Pulz, O., Heavy Metal Sorption by Microalgae, Acta Biotechnol., 1996, vol. 16, pp. 227–235.

    CAS  Article  Google Scholar 

  3. Lloyd, J.R., Microbial Reduction of Metals and Radionuclides, FEMS Microbiol. Rev., 2003, vol. 27, pp. 411–425.

    PubMed  CAS  Article  Google Scholar 

  4. Nalimova, A.A., Popova, V.V., Tsoglin, L.N., and Pronina, N.A., The Effects of Copper and Zinc on Spirulina platensis Growth and Heavy Metal Accumulation in Its Cells, Fiziol. Rast. (Moscow), 2005, vol. 52, pp. 259–265 (Russ. J. Plant Physiol., Engl. Transl., pp. 229–234).

    Google Scholar 

  5. Bekasova, O.D., Orleanskii, V.K., and Nikandrov, V.V., Formation of Cadmium Sulfide and Metallic Cadmium Crystallites on the Surface of Cyanobacterium Nostoc muscorum, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 263–271 (Russ. J. Plant Physiol., Engl. Transl., pp. 234–241).

    Google Scholar 

  6. Sentsova, O.Yu. and Maksimov, V.N., Heavy Metal Effects on Microorganisms, Usp. Mikrobiol., 1985, vol. 20, pp. 227–252.

    Google Scholar 

  7. Tomsett, A.B. and Thurman, D.A., Molecular Biology of Metal Tolerances of Plants, Plant, Cell Environ., 1988, vol. 11, pp. 383–394.

    CAS  Article  Google Scholar 

  8. Gekeler, W., Grill, E., Winnacker, E., and Zenk, M.H., Algae Sequester Heavy Metals via Synthesis of Phytachelatin Complexes, Arch. Microbiol., 1988, vol. 150, pp. 197–202.

    CAS  Article  Google Scholar 

  9. Cobbett, C. and Goldsbrough, P., Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 159–182.

    PubMed  CAS  Article  Google Scholar 

  10. Borgstahl, G.E.O., Pokross, M., Chehab, R., Senher, A., and Shell, E.H., Cryotrapping the Six-Coordinate, Distorted-Octahedral Active Site of Manganese Superoxide Dismutase, J. Mol. Biol., 2000, vol. 296, pp. 951–959.

    PubMed  CAS  Article  Google Scholar 

  11. Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J., and Whittaker, J.M., Crystal Structure of Manganese Catalase from Lactobacillus plantarum, Structure, 2001, vol. 9, pp. 725–738.

    PubMed  CAS  Article  Google Scholar 

  12. Bityutskii, N.P., Mikroelementy i rastenie (Microbutrients and Plants), St. Petersburg: St. Petersburg. Gos. Univ., 1999.

    Google Scholar 

  13. Larson, E.J. and Pecoraro, V.L., Manganese Redox Enzymes, New York: VCH, 1992.

    Google Scholar 

  14. Velichko, I.M., The Role of Iron and Manganese in Vital Activity of Blue-Green Algae Microcystis, Mikroelem. Sel’sk. Khoz. Med., 1968, vol. 4, pp. 62–71.

    Google Scholar 

  15. Kutyurin, V.M., Ulibekova, M.V., and Zakharova, N.I., Effect of Manganese Deficit on the Oxygen Emission and the Content of Pigment-Protein Complex in Scenedesmus obliquus Chloroplasats, Fiziol. Rast. (Moscow), 1976, vol. 23, pp. 932–937 (Sov. Plant Physiol., Engl. Transl.).

    CAS  Google Scholar 

  16. Katalog kul’tur mikrovodoroslei v kollektsiyakh SSSR (Catalogue of Microalgal Cultures in the Collection of USSR), Semenenko V.E., Ed., Moscow: Inst. Plant Physiol., 1991.

    Google Scholar 

  17. Pronina, N.A., Kovshova, Yu.I., Popova, V.V., Lapin, A.B., Alekseeva, S.G., Baum, R.F., Mishina, I.M., and Tsoglin, L.N., The Effect of Selenite Ions on Growth and Selenium Accumulation in Spirulina platensis, Fiziol. Rast. (Moscow), 2002, vol. 49, pp. 264–271 (Russ. J. Plant Physiol., Engl. Transl., pp. 235–241).

    Google Scholar 

  18. Zhukova, T.S., Klyachko-Gurvich, G.L., Vladimirova, M.G., and Kurnosova, T.A., Comparative Investigation of Growth and Biosynthesis Tendency in Various Strains of Chlorella in Different Nitrate Starvation: 2. Carbohydrate and Lipid Formation, Fiziol. Rast. (Moscow), 1964, vol. 16, pp. 96–101 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  19. Lowry, D., Rosebrough, N., Farr, A.L., and Randall, R.T., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

  20. Vladimirova, M.G., Ultrastructure of Dunaliella salina Cells and Its Functional Changes in Dependence on Light Intensity and Temperature, Fiziol. Rast. (Moscow), 1978, vol. 25, pp. 571–576 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  21. Yamaguchi, K., Suzuki, I., Yamamoto, H., Lyukevich, A.A., Bodrova, I., Los, D.A., Piven, I., Zinchenko, V., Kanehisa, M., and Murata, N., Two-Component Mn2+-Sensing System Negatively Regulates Expression of the mnt-CAB Operon in Synechocystis, Plant Cell, 2002, vol. 14, pp. 2901–2913.

    CAS  Article  Google Scholar 

  22. Fisher, N.F. and Jones, G.J., Heavy Metals and Marine Phytoplankton — Toxicity and Sulfhydryl Binding, J. Phycol., 1982, vol. 17, pp. 108–111.

    Article  Google Scholar 

  23. Upitis, V.V., Makro-i mikroelementy v optimizatsii mineral’nogo pitaniya mikrovodoroslei (Macro-and Micronutrients in Optimization of Mineral Nutrition of Microalgae), Riga: Zinatne, 1983.

    Google Scholar 

  24. Lloyd, J.R., Microbial Reduction of Metals and Radionuclides, FEMS Microbiol. Rev., 2003, vol. 27, pp. 411–425.

    PubMed  CAS  Article  Google Scholar 

  25. Garnham, G.W., Codd, G.A., and Gadd, G.M., Effect of Nutritional Regime on Accumulation of Cobalt, Manganese, Zinc by Green Microalgae, FEMS Microbiol. Lett., 1992, vol. 98, pp. 45–50.

    CAS  Article  Google Scholar 

  26. Beveridge, T.J. and Murray, R.C.E., Sites of Metal Deposition in the Cell Wall of Bacillus subtilis, J. Bacteriol., 1980, vol. 141, pp. 876–877.

    PubMed  CAS  Google Scholar 

  27. Ramelow, G.L., Liu, L., Himel, C., Fralick, D., Zhao, Y., and Tong, C., The Analysis of Dissolved Metals in Natural Waters after Preconcentration on Biosorbents of Immobilized Lichen and Seaweed Biomass in Silicagel, Int. J. Anal. Chem., 1993, vol. 53, pp. 219–232.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Chernikova, L.N. Tsoglin, A.G. Markelova, S.N. Zorin, V.K. Mazo, N.A. Pronina, 2006, published in Fiziologiya Rastenii, 2006, Vol. 53, No. 6, pp. 903–909.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chernikova, A.A., Tsoglin, L.N., Markelova, A.G. et al. Capacity of Spirulina platensis to accumulate manganese and its distribution in cell. Russ J Plant Physiol 53, 800–806 (2006). https://doi.org/10.1134/S1021443706060112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443706060112

Key words

  • Spirulina platensis
  • manganese
  • accumulation
  • growth
  • ultrastructure
  • intracellular distribution