Skip to main content
Log in

The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Seven-day-old kidney bean and cabbage seedlings were treated with 0.1–0.3 M NaCl solutions for 3 days. Chlorophyll content decreased in NaCl-treated Phaseolus seedlings, but did not significantly decrease in Brassica seedlings. Photochemical efficiency of photosystem II at dark-adapted state was similar in both Phaseolus and Brassica. The de-epoxidation state of violaxanthin increased more than sixfold in Phaseolus but showed no significant change in Brassica seedlings during NaCl treatment under low light. Maximum de-epoxidation state of violaxanthin in vivo tested in high light (2000 μmol quanta/(m2 s) increased in salt-stressed Phaseolus but decreased in Brassica seedlings. The nonphotochemical quenching (NPQ) also increased in Phaseolus but decreased in Brassica. This suggests that xanthophyll cycle pigments influence the NPQ in both Phaseolus and Brassica, but in an opposite way. The increase in the de-epoxidation state of violaxanthin in salt-stressed Phaseolus even under low light may be considered an early light signal to protect the pigment-protein complexes from salt-stress induced photodamage. It is proposed that in salt-stressed Brassica, the de-epoxidation is retarded and/or the epoxidation is accelerated leading to the accumulation of violaxanthin and a lower de-epoxidation state. Thus, light-induced violoxanthin cycle operation largely controls the photoprotection of photosynthetic apparatus in kidney bean leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

antheraxanthin

Car:

carotenes

Chl a and b :

chlorophylls a and b

F v /F m :

photochemical efficiency of PSII at dark adapted state

LHC:

light-harvesting antenna complex

L:

lutein

N:

neoxanthin

NPQ:

nonphotochemical quenching

PAR:

photosynthetically active radiation

PS:

photosystem

PQ:

plastoquinone

V:

violaxanthin

VDE:

violaxanthin de-epoxidase

Z:

zeaxanthin

References

  1. Flowers, T.J. and Yeo, A.R., Breeding for Salinity Tolerance in Crop Plants. Where Next? Aust. J. Plant Physiol., 1995, vol. 22, pp. 875–884.

    Google Scholar 

  2. Apse, M.P. and Blumwald, E., Engineering Salt Tolerance in Plants, Curr. Opin. Biotechnol., 2002, vol. 13, pp. 146–150.

    Article  CAS  PubMed  Google Scholar 

  3. Tester, M. and Davenport, R., Na+ Tolerance and Na+ Transport in Higher Plants, Ann. Bot., 2003, vol. 91, pp. 503–527.

    Article  CAS  PubMed  Google Scholar 

  4. Misra, A.N., Sahu, S.M., Misra, M., Mohapatra, P., Meera, I., and Das, N., Root Growth of a Salt Susceptible and a Salt Resistant Rice (Oryza sativa L.) during Seedling Establishment under NaCl Salinity, J. Agron. Crop Sci., 1997, vol. 178, pp. 9–14.

    CAS  Google Scholar 

  5. Misra, A.N., Sahu, S.M., Misra, M., Singh, P., Meera, I., Das, N., Kar, M., and Sahu, P., Sodium Chloride Induced Changes in Leaf Growth, and Pigment and Protein Contents in Two Rice Cultivars, Biol. Plant., 1997, vol. 39, pp. 257–262.

    Article  Google Scholar 

  6. Misra, A.N., Sahu, S.M., Misra, M., Ramaswamy, N.K., and Desai, T.S., Sodium Chloride Salt Stress Induced Changes in Thylakoid Pigment-Protein Complexes, Photosystem II Activity and Thermoluminescence Glow Peaks, Z. Naturforsch, 1999, vol. 54, pp. 640–644.

    CAS  Google Scholar 

  7. Demmig-Adams, B. and Adams, W.W., Antioxidants in Photosynthesis and Human Nutrition, Science, 2002, vol. 298, pp. 2149–2153.

    Article  CAS  PubMed  Google Scholar 

  8. Misra, A.N., Srivastava, A., and Strasser, R.J., Utilization of Fast Chlorophyll a Fluorescence Technique in Assessing the Salt/Ion Sensitivity of Mung Bean and Brassica Seedlings, J. Plant Physiol., 2001, vol. 158, pp. 1173–1181.

    Article  CAS  Google Scholar 

  9. Sahu, S.M., Misra, A.N., Misra, M., Ramaswamy, N.K., and Desai, T.S., Sodium Chloride Salt Stress Induced Changes in Thylakoid Pigment-Protein Complexes, PS II Activity of Mungbean (Vigna radiate L.) Seedlings, Photosynthesis: Mechanism and Effects, Garab, G., Ed., Dordrecht: Kluwer, 1998, pp. 2625–2628.

    Google Scholar 

  10. Muller, P., Li, X.-P., and Niyogi, K.K., Non-Photochemical Quenching. A Response to Excess Light Energy, Plant Physiol., 2001, vol. 125, pp. 1558–1566.

    CAS  PubMed  Google Scholar 

  11. Pogson, B.J., Niyogi, K.K., Bjorkman, O., and Della Penna, D., Altered Xanthophylls Compositions Adversely Affect Chlorophyll Accumulation and Non-Photochemical Quenching in Arabidopsis Mutants, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13324–13329.

    Article  CAS  PubMed  Google Scholar 

  12. Latowski, D., Grzyb, J., and Strzalka, K., The Xanthophyll Cycle — Molecular Mechanism and Physiological Significance, Acta Physiol. Plant., 2004, vol. 26, pp. 197–212.

    CAS  Google Scholar 

  13. Kuhlbrandt, W., Wang, D.N., and Fujiyoshi, Y., Atomic Model of Plant Light Harvesting Complex by Electron Crystallography, Nature, 1994, vol. 367, pp. 614–621.

    CAS  PubMed  Google Scholar 

  14. Johnson, G.N., Scholes, J.D., Horton, P., and Young, A.J., Relationship between Carotenoid Composition and Growth Habit in British Plant Species, Plant, Cell Environ., 1993, vol. 16, pp. 681–686.

    CAS  Google Scholar 

  15. Neubauer, C. and Yamamoto, H.E., Membrane Barriers and Mehler Peroxidase Reaction Limit the Ascorbate Availability for Violaxanthin De-Epoxidase Activity in Intact Chloroplasts, Photosynth. Res., 1994, vol. 39, pp. 137–147.

    Article  CAS  Google Scholar 

  16. Sieferman, D. and Yamamoto, H.E., Properties of NADPH and Oxygen Dependent Zeaxanthin Epoxidation of Isolated Chloroplasts, Arch. Biochem. Biophys., 1962, vol. 171, pp. 70–77.

    Google Scholar 

  17. Davison, P.A., Hunter, C.N., and Horton, P., Overexpression of β-Carotene Hydroxylase Enhances Stress Tolerance in Arabidopsis, Nature, 2002, vol. 418, pp. 203–206.

    Article  CAS  PubMed  Google Scholar 

  18. Asada, K., The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygen and Dissipation of Excess Photons, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 601–639.

    Article  CAS  PubMed  Google Scholar 

  19. Foyer, C.H. and Noctor, G., Oxygen Processing in Photosynthesis: Regulation and Signaling, New Phytol., 2000, vol. 146, pp. 359–388.

    Article  CAS  Google Scholar 

  20. Jezowska, I., Wolak, A., Gruszecki, W.I., and Strzalka, K., Effect of β-Carotene on Structural and Dynamic Properties of Model Phosphatidylcholine Membranes: 2. A 31P-NMR and 13C-NMR Study, Biochim. Biophys. Acta, 1994, vol. 1194, pp. 143–148.

    CAS  PubMed  Google Scholar 

  21. Strzalka, K. and Gruszecki, W.I., Effect of β-Carotene on Structural and Dynamic Properties of Model Phosphatidylcholine Membranes: 1. An EPR Spin Label Study, Biochim. Biophys. Acta, 1994, vol. 1194, pp. 138–142.

    CAS  PubMed  Google Scholar 

  22. Gruszecki, W.I. and Strzalka, K., Carotenoids as Modulators of Lipid Membrane Physical Properties, Biochim. Biophys. Acta, 2005, vol. 1740, pp. 108–115.

    CAS  PubMed  Google Scholar 

  23. Kostecka-Gugala, A., Latowski, D., and Strzalka, K., Thermotropic Phase Behaviour of α-Dipalmitoylphosphatidylcholine Multibilayers Is Influenced to Various Extents by Carotenoids Containing Different Structural Features — Evidence from Differential Scanning Calorimetry, Biochim. Biophys. Acta, 2003, vol. 1609, pp. 193–202.

    CAS  PubMed  Google Scholar 

  24. Gruszecki, W.I. and Strzalka, K., Does the Xanthophyll Cycle Take Part in the Regulation of Fluidity of the Thylakoid Membrane? Biochim. Biophys. Acta, 1991, vol. 1060, pp. 310–314.

    CAS  Google Scholar 

  25. Latowski, D., Kruk, J., Burda, K., Skrzynecka-Jaskier, M., Kostecka-Gugala, A., and Strzalka, K., Kinetics of Violaxanthin De-Epoxidation by Violaxanthin De-Epoxidase, a Xanthophyll Cycle Enzyme, Is Regulated by Membrane Fluidity in Model Lipid Bilayers, Eur. J. Biochem., 2002, vol. 269, pp. 4656–4665.

    Article  CAS  PubMed  Google Scholar 

  26. Latowski, D., Akerlund, H.-E., and Strzalka, K., Violaxanthin De-Epoxidase, the Xanthophyll Cycle Enzyme, Requires Lipid Inverted Hexagonal Structures for Its Activity, Biochemistry, 2004, vol. 43, pp. 4417–4420.

    Article  CAS  PubMed  Google Scholar 

  27. Subczynski, W.K., Markowska, E., and Sielewiesiuk, J., Effect of Polar Carotenoids on the Oxygen Diffusion-Concentration Product in Lipid Bilayers, Biochim. Biophys. Acta, 1991, vol. 1068, pp. 68–72.

    CAS  PubMed  Google Scholar 

  28. Strzalka, K. and Gruszecki, W.I., Modulation of Thylakoid Membrane Fluidity by Exogenously Added Carotenoids, J. Biochem. Mol. Biol. Biophys., 1997, vol. 1, pp. 103–108.

    CAS  Google Scholar 

  29. Tardy, F. and Havaux, M., Photosynthesis, Chlorophyll Fluorescence, Light Harvesting System and Photoinhibition Resistance of a Zeaxanthin-Accumulating Mutant of Arabidopsis thaliana, J. Photochem. Photobiol. Ser. B., 1996, vol. 34, pp. 87–94.

    CAS  Google Scholar 

  30. Hirschberg, J., Carotenoid Biosynthesis in Flowering Plants, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 210–218.

    Article  CAS  PubMed  Google Scholar 

  31. Milborrow, B.V. and Lee, H.S., Endogenous Biosynthetic Precursor of (+)-Abscisic Acid. VI. Carotenoids and ABA Are Formed by the ‘Non-Mevalonate’ Triosepyruvate Pathway in Chloroplasts, Aust. J. Plant Physiol., 1998, vol. 25, pp. 507–512.

    CAS  Google Scholar 

  32. Cramer, G.R. and Quarrie, S.A., Abscisic Acid Is Correlated with Leaf Growth Inhibition of Four Genotypes of Maize Differing in Their Response to Salinity, Funct. Plant Biol., 2002, vol. 29, pp. 111–119.

    CAS  Google Scholar 

  33. Makela, P., Munns, R., Colmer, T.D., and Pelton-Sainio, P., Growth of Tomato and an ABA-Deficient Mutant (sitiens) under Saline Conditions, Physiol. Plant., 2003, vol. 17, pp. 58–63.

    Google Scholar 

  34. Arnon, D.I., Copper Enzyme in Isolated Chloroplasts. Polyphenol Oxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    CAS  Google Scholar 

  35. Gilmore, A.M. and Yamamoto, H.Y., Resolution of Lutein and Zeaxanthin Using a Non-Endcapped, Lightly Carbon Loaded C18 High-Performance Liquid Chromatographic Column, J. Chromatogr., 1991, vol. 35, pp. 67–78.

    Google Scholar 

  36. Farber, A., Young, A.J., Ruban, A.V., Horton, P., and Jahns, P., Dynamics of Xanthophylls Cycle Activity in Different Antenna Subcomplexes in Photosynthetic Membranes of Higher Plants. The Relationship between Zeaxanthin Conversion and Non-Photochemical Fluorescence Quenching, Plant Physiol., 1997, vol. 115, pp. 1609–1618.

    CAS  PubMed  Google Scholar 

  37. Demmig, B., Winter, K., Kruger, A., and Czygan, F.-C., Photoinhibition and Zeaxanthin Formation in Intact Leaves, Plant Physiol., 1987, vol. 84, pp. 218–224.

    CAS  Google Scholar 

  38. Thayer, S.S. and Bjorkman, O., Leaf Xanthophyll Content and Composition in Sun and Shade Determined by HPLC, Photosynth. Res., 1990, vol. 23, pp. 331–343.

    Article  CAS  Google Scholar 

  39. Biswal, A.K., Dilnawaz, F., Ramaswamy, N.K., David, K.A.V., and Misra, A.N., Thermoluminescence Characteristics of Sodium Chloride Salt Stressed Indian Mustard Seedlings, Luminescence, 2002, vol. 17, pp. 135–140.

    Article  CAS  PubMed  Google Scholar 

  40. Misra, A.N., Sahu, S.M., and Misra, M., Soil Salinity Induced Changes in Pigment and Protein Contents in Cotyledons and Leaves of Indian Mustard (Brassica juncea Coss.), Acta Physiol. Plant., 1995, vol. 17, pp. 375–380.

    CAS  Google Scholar 

  41. Horton, P., Ruban, A.V., and Walters, R.G., Regulation of Light Harvesting in Green Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, vol. 47, pp. 655–684.

    Article  CAS  PubMed  Google Scholar 

  42. Havaux, M., Bonfils, J., Lutz, C., and Niyogi, K., Photodamage of the Photosynthetic Apparatus and Its Dependence on the Leaf Developmental Stage in the nq1 Arabidopsis Mutant Deficient in the Xanthophyll Cycle Enzyme Violaxanthin De-Epoxidase, Plant Physiol., 2000, vol. 124, pp. 273–284.

    Article  CAS  PubMed  Google Scholar 

  43. Hurry, V., Anderson, J.M., Chow, W.S., and Osmond, C.B., Accumulation of Zeaxanthin in Abscisic Acid Deficient Mutant of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Photosensitivity to Photoinhibition In Vivo, Plant Physiol., 1997, vol. 116, pp. 173–181.

    Google Scholar 

  44. Niyogi, K.K., Bjorkman, O., and Grossman, A.R., The Role of Specific Xanthophylls in Photoprotection, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 14 162–14 167.

    Article  Google Scholar 

  45. Yamamoto, H.E., Nakayama, T.O.M., and Chichester, C.O., Studies on the Light and Dark Interconverions of Xanthophylls, Arch. Biochem. Biophys., 1962, vol. 97, pp. 168–173.

    Article  CAS  PubMed  Google Scholar 

  46. Bratt, C.E., Arvidsson, P.-O., Carlsson, M., and Akerlund, H.-E., Regulation of Violaxanthin De-Epoxidase Activity by pH and Ascorbate Concentration, Photosynth. Res., 1995, vol. 45, pp. 169–175.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 1, pp. 113–121.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, A.N., Latowski, D. & Strzalka, K. The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. Russ J Plant Physiol 53, 102–109 (2006). https://doi.org/10.1134/S1021443706010134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443706010134

Key words

Navigation