Skip to main content
Log in

Probing quantum systems from the inside while producing the world’s shortest optical pulses

  • Reports by the Laureates of the 2015 Lomonosov Grand Gold Medal of the Russian Academy of Sciences
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

In 1964, Professor L.V. Keldysh, with whom I share winning the Lomonosov Gold Medal, published what was to become a very influential paper. In his paper, he developed the theory of multiphoton ionization for atoms and the creation of electron-hole pairs for solids. Fifty years later, we generate the world’s shortest light pulses using electron wave packets that are extracted from rare gas atoms by an intense infrared pulse much as Professor Keldysh described. The ultrashort bursts of XUV radiation from many atoms add coherently to produce intense pulses as short as 65 attoseconds—the current world record. Similar highly nonlinear processes occur in other atoms, molecules and solids. In addition to its importance as a new source of soft X-ray radiation and ultrashort pulses, the radiation generated from ionizing material encodes information on the quantum system from which it was made. By analyzing the XUV radiation, not only can we image molecular orbitals but also determine the band structure of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz. 20, 1307–1314 (1965).

    Google Scholar 

  2. P. B. Corkum, N. H. Burnett, and F. Brunel, “Above threshold ionization in the long wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).

    Article  CAS  Google Scholar 

  3. P. B. Corkum, “A plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71 (13), 1994–1997 (1993).

    Article  CAS  Google Scholar 

  4. J. P. Morrison, C. J. Rennick, J. S. Keller, and E. R. Grant, “Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO,” Phys. Rev. Lett. 101, 205005 (2008).

    Article  CAS  Google Scholar 

  5. N. H. Burnett and P. B. Corkum, “Cold plasma production for recombination XUV lasers by optical field induced ionization,” J. Opt. Soc. Am. B 6, 1195–1199 (1989).

    Article  CAS  Google Scholar 

  6. Y. Liu, Y. Brelet, G. Point, A. Houard, and A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Optics Express 21, 22791–22798 (2013).

    Article  Google Scholar 

  7. H. Zhang, C. Jing, J. Yao, et al., “Rotational coherence encoded in an ‘air-laser’ spectrum of nitrogen molecular ions in an intense laser field,” Phys. Rev. X 3, 041009 (2013).

    Google Scholar 

  8. T. Zuo, A. D. Bandrauk, and P. B. Corkum, “Laser induced electron diffraction: A new tool for probing ultrafast molecular dynamics,” Chem. Phys. Lett. 259, 313–320 (1996).

    Article  CAS  Google Scholar 

  9. J. Itatani, J. Levesque, D. Zeidler, et al., “Tomographic imaging of molecular orbitals,” Nature 432, 867–871 (2004).

    Article  CAS  Google Scholar 

  10. T. Popmintchev, M.-C. Chen, D. Popmintchev, et al., “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).

    Article  CAS  Google Scholar 

  11. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19 (22), 1870–1872 (1994).

    Article  CAS  Google Scholar 

  12. M. Hentschel, R. Kienberger, C. Spielmann, et al., “Attosecond metrology,” Nature 414, 509–513 (2001).

    Article  CAS  Google Scholar 

  13. C. Smeenk, L. Arissian, B. Zhou, et al., “Partitioning of the linear photon momentum in multiphoton ionization,” Phys. Rev. Lett. 106, 193002 (2011).

    Article  CAS  Google Scholar 

  14. L. Arissian, C. Smeenk, F. Turner, et al., “Direct test of laser tunneling with electron momentum imaging,” Phys. Rev. Lett. 105, 133002 (2010).

    Article  CAS  Google Scholar 

  15. M. Meckel, D. Comtois, D. Zeidler, et al., “Laser induced electron tunneling and diffraction,” Science 320, 1478–1482 (2008).

    Article  CAS  Google Scholar 

  16. J. L. Kraus, K. J. Schafer, and K. C. Kulander, “Highorder harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett. 68, 3535–3558 (1992).

    Article  Google Scholar 

  17. N. Dudovich, O. Smirnova, J. Levesque, et al., “Measuring and controlling the birth of attosecond XUV pulses,” Nature Physics 2, 781–786 (2006).

    Article  CAS  Google Scholar 

  18. F. Brunel, “Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the highintensity limit,” J. Opt. Soc. Am. 7, 521–526 (1990).

    Article  CAS  Google Scholar 

  19. M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, et al., “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101, 243001 (2008).

    Article  CAS  Google Scholar 

  20. D. Grojo, M. Gertsvolf, S. Lei, et al., “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).

    Article  Google Scholar 

  21. M. Gertsvolf, M. Spanner, D. M. Rayner, and P. B. Corkum, “Demonstration of attosecond ionization dynamics inside transparent solids,” J. Phys. B 43, 131002 (2010).

    Article  Google Scholar 

  22. S. Ghimire, A. D. DiChiara, E. Sistrunk, et al., “Observation of high-order harmonic generation in a bulk crystal,” Nature Physics 7, 138–141 (2011).

    Article  CAS  Google Scholar 

  23. T. T. Luu, “Extreme ultraviolet high harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).

    Article  CAS  Google Scholar 

  24. G. Vampa, C. R. McDonald, G. Orlando, et al., “Theoretical analysis of high-harmonic generation in solids,” Phys. Rev. Lett. 113, 073901 (2014).

    Article  CAS  Google Scholar 

  25. G. Vampa, C. R. McDonald, G. Orlando, et al., “Semiclassical analysis of high harmonic generation in bulk crystals,” Phys. Rev. B 91, 064302 (2015).

    Article  Google Scholar 

  26. G. Vampa, T. J. Hammond, N. Thiré, et al., “Linking high harmonics from gases and solids,” Nature 522, 462–464 (2015).

    Article  CAS  Google Scholar 

  27. G. Vampa, T. J. Hammond, N. Thiré, et al., “Generation of high harmonics from silicon”, Preprint No. arXiv:1605.06345arXiv (2016).

    Google Scholar 

  28. G. Vampa, T. J. Hammond, N. Thiré, et al., “All-optical reconstruction of crystal band structure,” Phys. Rev. Lett. 115, 193603 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Corkum.

Additional information

Published in Russian in Vestnik Rossiiskoi Akademii Nauk, 2016, Vol. 86, No. 12, pp. 1073–1080.

The article was translated by the author.

Paul Corkum is a Professor in the Department of Physics, University of Ottawa and Head of the attosecond pulses research program at the National Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corkum, P. Probing quantum systems from the inside while producing the world’s shortest optical pulses. Her. Russ. Acad. Sci. 86, 426–432 (2016). https://doi.org/10.1134/S1019331616060125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331616060125

Keywords

Navigation