Skip to main content

The role of solar activity in global warming

Abstract

The author associates the recently observed climate warming and carbon dioxide concentration growth in the lower atmospheric layers with variations of solar-geomagnetic activity in global cloud formation and the significant decrease in the role of forests in carbon dioxide accumulation in the process of photosynthesis. The contribution of the greenhouse effect of carbon-containing gases to global warming turns out to be insignificant.

This is a preview of subscription content, access via your institution.

References

  1. Proc. First All-Union Conference “Solar-Atmospheric Correlations in Climate Theory and Weather Forecasts” (Gidrometeoizdat, Leningrad, 1974) [in Russian].

  2. S. V. Avakyan, “Optics in the global changes of environment,” Armen. J. Phys. 2(1) (2009).

    Google Scholar 

  3. K. Ya. Kondrat’ev and L. S. Ivlev, Climatology of Aerosols and Cloudiness (VVM, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  4. V. L. Krauklis, G. A. Nikol’skii, M. M. Safronova, and E. O. Shul’ts, “On the conditions under which the anomalous extinction of the UV radiation by aerosol can occur in clear atmosphere,” Opt. Atmos. 3(3), 227 (1990).

    Google Scholar 

  5. G. A. Nikol’skii and E. O. Shul’ts, “Spectral and temporal variations of the residual extinction in the near UV Region,” Opt. Atmos. 4(9), 961 (1991).

    Google Scholar 

  6. V. S. Troitskii, A. M. Starodubtsev, L. N. Bondar’, et al., “Search for sporadic radio emission from space at centimeter and decimeter wavelengths,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16(3) (1973).

    Google Scholar 

  7. S. V. Avakyan, A. E. Serova, and N. A. Voronin “The role of Rydberg atoms and molecules in the upper atmosphere,” Geomagn. Aeron. 37(3), 331 (1997).

    Google Scholar 

  8. S. M. Grach, V. M. Fridman, L. M. Lifshits, et al., “Decimeter electromagnetic radiation stimulated by shortwave heating of the atmosphere,” in Proc. XX All-Russia Conference on Radio Wave Propagation (Nizhni Novgorod, 2002) [in Russian].

    Google Scholar 

  9. S. V. Avakyan and N. A. Voronin, “Possible mechanisms for the influence of heliogeophysical activity on the biosphere and the weather,” J. Opt. Technol. 73(4), 281 (2006).

    Article  Google Scholar 

  10. V. I. Vernadsky, Scientific Thought As a Planetary Phenomenon (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  11. D. R. Bates, “Electron-ion recombination in an ambient molecular gas,” J. Phys. B: At. Mol. Phys. 14(18), 3525 (1981).

    Article  Google Scholar 

  12. A. A. Dmitriev and T. Yu. Lomakina, “Cloud cover and space X-ray radiation,” in Solar Activity Effects in the Lower Atmosphere (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  13. K. Ya. Kondrat’ev and V. I. Binenko, “Cirrus clouds, radiation, and climate,” in Science and Technology Results, Ser. Meteorology and Climatology (VINITI, Moscow, 1988), Vol. 18 [in Russian].

    Google Scholar 

  14. E. P. Borisenkov, T. A. Bazlova, and L. N. Efimova, Cirrus Cover and Its Influence on Atmospheric Processes (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  15. V. N. Kolesnikova and A. S. Monin, “Spectra of micrometeorological, synoptic, and climatic oscillations of meteorological fields,” in Meteorological Research, General Circulation of the Earth’s Atmosphere (Nauka, Moscow, 1968), Vol. 16, pp. 30–57 [in Russian].

    Google Scholar 

  16. S. V. Avakyan and N. A. Voronin, “On the radiooptical and optical mechanisms of influence of cosmic factors on the global warming,” J. Opt. Technol. 77(2), 141 (2010).

    Article  Google Scholar 

  17. R. E. Benestad, Solar Activity and Earth’s Climate (Springer-Praxis, 2002).

    Google Scholar 

  18. V. A. Rumyantsev and Yu. A. Trapeznikov, “Grounding of forming mechanism for short-term climatic cycles of hydrometeorological processes,” Izv. Russ. Geogr. Obshch. 144(3), 9 (2012).

    Google Scholar 

  19. S. V. Avakyan and N. A. Voronin, “The role of space and ionospheric disturbances in the global climate change and pipeline corrosion,” Izv., Atm. Oceanic Phys. 47(9), 1143 (2011).

    Article  Google Scholar 

  20. M. Lockwood and C. Frohlich, “Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature,” in Proc. R. Soc. London, Ser. A (2007). doi 10.1098/r5sspa.2007.1880

    Google Scholar 

  21. J. Lean, “Living with a variable sun,” Phys. Today, No. 6, 35 (2005).

    Google Scholar 

  22. A. Belov, H. Garcia, V. Kurt, and E. Mavromichalaki, “Proton events and X-ray flares in the last three solar cycles,” Cosm. Res. 43(3), 165 (2005).

    Article  Google Scholar 

  23. V. N. Aref’ev, F. V. Kashin, V. K. Semenov, et al., “Water vapor in the atmosphere over the northern Tien Shan,” Izv. Atm. Oceanic Phys. 42(6), 739 (2006).

    Article  Google Scholar 

  24. P. R. Good and E. Palle, “Shortwave forcing of the Earth’s climate: Modern and historical variations in the sun’s irradiance and the Earth’s reflectance,” J. Atm. Sol.-Terr. Phys. 69(13), 1556 (2007).

    Article  Google Scholar 

  25. V. A. Golovko, “Global redistribution of components of the Earth’s radiation balance,” Issled. Zemli Kosmosa, No. 5 (2003).

    Google Scholar 

  26. O. M. Pokrovskii, “Climate: Myths and reality,” Gos. Upravlenie Resursami, No. 1(55) (2010).

    Google Scholar 

  27. S. V. Avakyan, “Channels of cosmophysical factors influence on the weather and climate characteristics,” in Proc. All-Russia Annual Conference on Solar Physics “Solar and Solar-Terrestrial Physics-2010.” October 3–9, 2010 (GAO, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  28. S. P. Gorshkov, “Causes of global warming and increased climate instability: Possible countermeasures off the Kyoto Protocol,” in Sustainable Development: Problems and Prospects, Vol. 4: Rational Nature Management: International Programs, Russian and Foreign Practices (KMK, Moscow, 2010) [in Russian].

    Google Scholar 

  29. N. B. Leonova and G. N. Ogureeva, “Forest vegetation of the temperate zone under global environmental changes,” in Recent Global Changes in the Natural Environment (Nauchnyi Mir, Moscow, 2006), Vol. 2 [in Russian].

    Google Scholar 

  30. J. E. Kristjansson, J. Kristiansen, and E. Kaas, “Solar activity, cosmic rays, clouds, and climate-an update,” Adv. in Space Res. 34, 407 (2004). doi 10.1016/j.asr.2003.02.040

    Article  Google Scholar 

  31. A. M. Molchanov, “Resonanses in multifrequency oscillations,” Dokl. Akad. Nauk SSSR 168(2), 284 (1966).

    Google Scholar 

  32. V. P. Kozelov and G. I. Mingaleva, “Anisotropy of solar flare activity in the inertial space and the resonance ability of the solar system,” in Substorms and Excitations in the Magnetosphere (Nauka, Leningrad, 1975), pp. 264–274 [in Russian].

    Google Scholar 

  33. A. I. Lazarev, V. V. Kovalenok, and S. V. Avakyan, Studies of the Earth from Piloted Spaceships (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © S.V. Avakyan, 2013, published in Vestnik Rossiiskoi Akademii Nauk, 2013, Vol. 83, No. 5, pp. 425–436.

Sergei Vazgenovich Avakyan, Dr. Sci. (Phys.-Math.), is head of the Laboratory of Aerospace Physical Optics at the Vavilov State Optical Institute and a leading researcher of the RAS Central (Pulkovo) Astronomical Observatory.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Avakyan, S.V. The role of solar activity in global warming. Her. Russ. Acad. Sci. 83, 275–285 (2013). https://doi.org/10.1134/S1019331613030015

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331613030015

Keywords

  • Solar Activity
  • Microwave Radiation
  • Global Warming
  • Solar Flare
  • Geomagnetic Storm