Herald of the Russian Academy of Sciences

, Volume 83, Issue 3, pp 275–285 | Cite as

The role of solar activity in global warming

  • S. V. Avakyan
Environmental Problems


The author associates the recently observed climate warming and carbon dioxide concentration growth in the lower atmospheric layers with variations of solar-geomagnetic activity in global cloud formation and the significant decrease in the role of forests in carbon dioxide accumulation in the process of photosynthesis. The contribution of the greenhouse effect of carbon-containing gases to global warming turns out to be insignificant.


Solar Activity Microwave Radiation Global Warming Solar Flare Geomagnetic Storm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proc. First All-Union Conference “Solar-Atmospheric Correlations in Climate Theory and Weather Forecasts” (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  2. 2.
    S. V. Avakyan, “Optics in the global changes of environment,” Armen. J. Phys. 2(1) (2009).Google Scholar
  3. 3.
    K. Ya. Kondrat’ev and L. S. Ivlev, Climatology of Aerosols and Cloudiness (VVM, St. Petersburg, 2008) [in Russian].Google Scholar
  4. 4.
    V. L. Krauklis, G. A. Nikol’skii, M. M. Safronova, and E. O. Shul’ts, “On the conditions under which the anomalous extinction of the UV radiation by aerosol can occur in clear atmosphere,” Opt. Atmos. 3(3), 227 (1990).Google Scholar
  5. 5.
    G. A. Nikol’skii and E. O. Shul’ts, “Spectral and temporal variations of the residual extinction in the near UV Region,” Opt. Atmos. 4(9), 961 (1991).Google Scholar
  6. 6.
    V. S. Troitskii, A. M. Starodubtsev, L. N. Bondar’, et al., “Search for sporadic radio emission from space at centimeter and decimeter wavelengths,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16(3) (1973).Google Scholar
  7. 7.
    S. V. Avakyan, A. E. Serova, and N. A. Voronin “The role of Rydberg atoms and molecules in the upper atmosphere,” Geomagn. Aeron. 37(3), 331 (1997).Google Scholar
  8. 8.
    S. M. Grach, V. M. Fridman, L. M. Lifshits, et al., “Decimeter electromagnetic radiation stimulated by shortwave heating of the atmosphere,” in Proc. XX All-Russia Conference on Radio Wave Propagation (Nizhni Novgorod, 2002) [in Russian].Google Scholar
  9. 9.
    S. V. Avakyan and N. A. Voronin, “Possible mechanisms for the influence of heliogeophysical activity on the biosphere and the weather,” J. Opt. Technol. 73(4), 281 (2006).CrossRefGoogle Scholar
  10. 10.
    V. I. Vernadsky, Scientific Thought As a Planetary Phenomenon (Nauka, Moscow, 1991) [in Russian].Google Scholar
  11. 11.
    D. R. Bates, “Electron-ion recombination in an ambient molecular gas,” J. Phys. B: At. Mol. Phys. 14(18), 3525 (1981).CrossRefGoogle Scholar
  12. 12.
    A. A. Dmitriev and T. Yu. Lomakina, “Cloud cover and space X-ray radiation,” in Solar Activity Effects in the Lower Atmosphere (Gidrometeoizdat, Leningrad, 1977) [in Russian].Google Scholar
  13. 13.
    K. Ya. Kondrat’ev and V. I. Binenko, “Cirrus clouds, radiation, and climate,” in Science and Technology Results, Ser. Meteorology and Climatology (VINITI, Moscow, 1988), Vol. 18 [in Russian].Google Scholar
  14. 14.
    E. P. Borisenkov, T. A. Bazlova, and L. N. Efimova, Cirrus Cover and Its Influence on Atmospheric Processes (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  15. 15.
    V. N. Kolesnikova and A. S. Monin, “Spectra of micrometeorological, synoptic, and climatic oscillations of meteorological fields,” in Meteorological Research, General Circulation of the Earth’s Atmosphere (Nauka, Moscow, 1968), Vol. 16, pp. 30–57 [in Russian].Google Scholar
  16. 16.
    S. V. Avakyan and N. A. Voronin, “On the radiooptical and optical mechanisms of influence of cosmic factors on the global warming,” J. Opt. Technol. 77(2), 141 (2010).CrossRefGoogle Scholar
  17. 17.
    R. E. Benestad, Solar Activity and Earth’s Climate (Springer-Praxis, 2002).Google Scholar
  18. 18.
    V. A. Rumyantsev and Yu. A. Trapeznikov, “Grounding of forming mechanism for short-term climatic cycles of hydrometeorological processes,” Izv. Russ. Geogr. Obshch. 144(3), 9 (2012).Google Scholar
  19. 19.
    S. V. Avakyan and N. A. Voronin, “The role of space and ionospheric disturbances in the global climate change and pipeline corrosion,” Izv., Atm. Oceanic Phys. 47(9), 1143 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Lockwood and C. Frohlich, “Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature,” in Proc. R. Soc. London, Ser. A (2007). doi 10.1098/r5sspa.2007.1880Google Scholar
  21. 21.
    J. Lean, “Living with a variable sun,” Phys. Today, No. 6, 35 (2005).Google Scholar
  22. 22.
    A. Belov, H. Garcia, V. Kurt, and E. Mavromichalaki, “Proton events and X-ray flares in the last three solar cycles,” Cosm. Res. 43(3), 165 (2005).CrossRefGoogle Scholar
  23. 23.
    V. N. Aref’ev, F. V. Kashin, V. K. Semenov, et al., “Water vapor in the atmosphere over the northern Tien Shan,” Izv. Atm. Oceanic Phys. 42(6), 739 (2006).CrossRefGoogle Scholar
  24. 24.
    P. R. Good and E. Palle, “Shortwave forcing of the Earth’s climate: Modern and historical variations in the sun’s irradiance and the Earth’s reflectance,” J. Atm. Sol.-Terr. Phys. 69(13), 1556 (2007).CrossRefGoogle Scholar
  25. 25.
    V. A. Golovko, “Global redistribution of components of the Earth’s radiation balance,” Issled. Zemli Kosmosa, No. 5 (2003).Google Scholar
  26. 26.
    O. M. Pokrovskii, “Climate: Myths and reality,” Gos. Upravlenie Resursami, No. 1(55) (2010).Google Scholar
  27. 27.
    S. V. Avakyan, “Channels of cosmophysical factors influence on the weather and climate characteristics,” in Proc. All-Russia Annual Conference on Solar Physics “Solar and Solar-Terrestrial Physics-2010.” October 3–9, 2010 (GAO, St. Petersburg, 2010) [in Russian].Google Scholar
  28. 28.
    S. P. Gorshkov, “Causes of global warming and increased climate instability: Possible countermeasures off the Kyoto Protocol,” in Sustainable Development: Problems and Prospects, Vol. 4: Rational Nature Management: International Programs, Russian and Foreign Practices (KMK, Moscow, 2010) [in Russian].Google Scholar
  29. 29.
    N. B. Leonova and G. N. Ogureeva, “Forest vegetation of the temperate zone under global environmental changes,” in Recent Global Changes in the Natural Environment (Nauchnyi Mir, Moscow, 2006), Vol. 2 [in Russian].Google Scholar
  30. 30.
    J. E. Kristjansson, J. Kristiansen, and E. Kaas, “Solar activity, cosmic rays, clouds, and climate-an update,” Adv. in Space Res. 34, 407 (2004). doi 10.1016/j.asr.2003.02.040CrossRefGoogle Scholar
  31. 31.
    A. M. Molchanov, “Resonanses in multifrequency oscillations,” Dokl. Akad. Nauk SSSR 168(2), 284 (1966).Google Scholar
  32. 32.
    V. P. Kozelov and G. I. Mingaleva, “Anisotropy of solar flare activity in the inertial space and the resonance ability of the solar system,” in Substorms and Excitations in the Magnetosphere (Nauka, Leningrad, 1975), pp. 264–274 [in Russian].Google Scholar
  33. 33.
    A. I. Lazarev, V. V. Kovalenok, and S. V. Avakyan, Studies of the Earth from Piloted Spaceships (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. V. Avakyan

There are no affiliations available

Personalised recommendations