Skip to main content
Log in

The Influence of Ultralow Content of Graphene on Wear-Resistant Properties of Composites Based on Ultra-High Molecular Weight Polyethylene

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The composite samples with the graphene filler content of 0.014 to 0.05 wt % have been prepared via the in situ polymerization. The effect of the ultralow content of graphene on the set of wear-resistant and tribological properties of the synthesized composited based on ultra-high molecular weight polyethylene has been studied. Weas resistance of the synthesized materials under conditions of high-speed impact of a water-sand suspension, wear during microcutting and friction wear resistance have been investigated. Furthermore, the friction coefficient on steel has been determined. The introduction of graphene into the ultra-high molecular weight polyethylene has improved the resistance to abrasion during microcutting and has increased the wear resistance under the action of the water-sand suspension (the free abrasive wear).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. N. Andreeva, E. V. Veselovskaya, and E. I. Nalivaiko, High Density Ultra-High Molecular Weight Polyethylene (Khimiya, Leningrad, 1982) [in Russian].

    Google Scholar 

  2. V. P. Galitsyn, Doctoral Dissertation in Chemistry (VNIISV, Moscow, 2012) [in Russian].

  3. Yu. Mai and Yu. Zhong-Zhen, Polymer Nanocomposites (Tekhnosfera, Moscow, 2011) [in Russian].

    Google Scholar 

  4. J. Zhen, Y. Han, and L. Zhu, Tribol. Int. 179, 108097 (2023).

  5. M. Hussain, R. A. Naqvi, and Abbas N. Naseem, Polymers 323 (12(2)), 1 (2020).

    Google Scholar 

  6. S. Sharma, J. Bijwe, and S. Panier, Wear 332–333, 863 (2015).

    Article  Google Scholar 

  7. I. K. Aliyu, M. U. Azam, and D. U. Lawal, Arabian J. Sci. Eng., No. 45, 849 (2019).

  8. K. Plumlee and C. J. Schwartz, Wear 267, 710 (2009).

    Article  CAS  Google Scholar 

  9. M. M. Rodrigues, C. P. Fontoura, and A. E. Maddalozzo, Composites, No. 189, 1 (2020).

  10. S. V. Panin and L. A. Kornienko, and T. Nguen, J. Frict. Wear 35 (4), 444 (2014).

    CAS  Google Scholar 

  11. V. Pettarin, M. G. Churruca, and D. Felhos, Wear 269, 31 (2010).

    Article  CAS  Google Scholar 

  12. J. Zhen and Y. Han, and L. Zhu, Tribol. Int. 179, 108097 (2023).

  13. M. Guezmil, W. Bensalah, and S. Mezlini, Mater. Res. Express 6 (7), 1 (2019).

    Google Scholar 

  14. O. V. Gogoleva, P. N. Petrova, and S. N. Popov, J. Frict. Wear 36 (4), 301 (2015).

    Article  Google Scholar 

  15. J. Tong, Y. Ma, R. D. Arnell, and L. Ren, Composites A 37, 38 (2006).

  16. L. A. Novokshonova and I. N. Meshkova, Vysokomolek. Soed. 36 (4), 629 (1994).

    CAS  Google Scholar 

  17. M. D. Yusrina and W. S. Tan, Proc. Adv. Mater., Eng. Technol. 2291, 020029–1 (2020).

    Google Scholar 

  18. B. P. Chang, H. M. Akil, and R. B. Nasir, Tribol. Int. 88, 252 (2015).

    Article  Google Scholar 

  19. B. P. Chang, H. Akil, and R. Nasir, Sains Malays. 44 (6), 819 (2015).

    Article  CAS  Google Scholar 

  20. V. N. Aderikha, V. A. Shapovalov, and A. P. Krasnov, Composites 29 (4), 318 (2008).

    Google Scholar 

  21. S. V. Panin, D. G. Buslovich, Y. V. Dontsov, S. A. Bochkareva, L. A. Kornienko, and F. Berto, Materials 14 (6), 1515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Wang and Z. Yin, Ind. Lubr. Tribol. 71, 22 (2019).

    Article  Google Scholar 

  23. S. V. Panin, L. A. Kornienko, and L. R. Ivanova, J. Frict. Wear 35 (4), 290 (2014).

    Article  Google Scholar 

  24. W. J. Wood, R. G. Maguire, and W. H. Zhong, Composites B 42, 584 (2011).

  25. S. V. Panin, L. A. Kornienko, and V. O. Alexenko, Materials 13, 338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. A. Samad and S. K. Sinha, Tribol. Int. 44, 1932 (2011).

    Article  Google Scholar 

  27. J. M. D. Zavala, H. M. L. Gutiérrez, E. Segura-Cárdenas, N. Mamidi, R. Morales-Avalos, J. Villela-Castrejón, and A. Elías-Zúñiga, J. Mech. Behav. Biomed. Mater. 120, 104554 (2021).

  28. Y. An, Z. Tai, Y. Qi, X. Yan, B. Liu, Q. Xue, and J. Pei, J. Appl. Polym. Sci., 131 (1) 39640 (2014).

    Google Scholar 

  29. W. Pang, W. P. Jialiang, and W. Q. Zhang, RSC Adv. 7, 55536 (2017).

    Article  CAS  Google Scholar 

  30. X. Chen, S. Zhang, and L. Zhang, Polymers 13, 482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. I. I. Farberova, S. B. Ratner, and E. G. Lur’e, Plast. Massy, No. 9, 35 (1962).

  32. Z. Tai and Y. Chen, and Y. An, Tribol. Lett. 46, 55 (2012).

    Article  CAS  Google Scholar 

  33. P. N. Brevnov, G. R. Kirsankina, A. S. Zabolotnov, V. G. Krasheninnikov, V. G. Grinev, N. G. Berezkina, E. A. Sinevich, M. A. Shcherbina, and L. A. Novokshonova, Polym. Sci., Ser. C 58 (1), 38 (2016).

    Article  CAS  Google Scholar 

  34. H.-J. Park, S.-Y. Kwak, and S. Kwak, Macromol. Chem. Phys. 206, 945 (2005).

    Article  CAS  Google Scholar 

  35. V. G. Nazarov, V. P. Stolyarov, F. A. Doronin, A. G. Evdokimov, G. O. Rytikov, P. N. Brevnov, A. S. Zabolotnov, L. A. Novokshonova, and A. A. Berlin, Polym. Sci., Ser. A 61 (3), 325 (2019).

    Article  CAS  Google Scholar 

  36. N. G. Ryvkina, P. A. Nezhnyi, and O. I. Kudinova, Russ. J. Phys. Chem. B. 13 (5), 831 (2019).

    Article  CAS  Google Scholar 

  37. K. A. Shiyanova, M. V. Gudkov, and A. Y. Gorenberg, ACS Omega 39 (5), 25148 (2020).

    Article  Google Scholar 

  38. S. Pei and H. M. Cheng, Carbon 50 (9), 3210 (2012).

    Article  CAS  Google Scholar 

  39. P. N. Brevnov, A. S. Zabolotnov, and V. G. Krasheninnikov, Kinet. Catal. 57 (4), 482 (2016).

    Article  CAS  Google Scholar 

  40. A. A. Teplov, S. I. Belousov, E. A. Golovkova, S. V. Krasheninnikov, E. K. Golubev, A. L. Vasiliev, P. V. Dmitryakov, A. I. Buzin, S. N. Malakhov, and D. R. Streltsov, Crystallogr. Rep. 66 (6), 883 (2021).

    Article  CAS  Google Scholar 

  41. I. Kovařikova, B. Szewczyková, P. Blaškovitš, E. Hodúlová, and E. Lechovič, Mater. Sci. Technol. 1, 1 (2009).

    Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project 22-23-20018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zabolotnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotnov, A.S., Gostev, S.S., Gudkov, M.V. et al. The Influence of Ultralow Content of Graphene on Wear-Resistant Properties of Composites Based on Ultra-High Molecular Weight Polyethylene. Polym. Sci. Ser. A 65, 296–301 (2023). https://doi.org/10.1134/S0965545X23700967

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700967

Navigation