Skip to main content
Log in

Thermodynamics of Interaction between Poly(perfluorosulfonic acid) Nafion and Water

  • SOLUTIONS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The thermodynamics of interaction between poly(perfluorosulfonic acid) Nafion and water is studied by isothermal sorption and microcalorimetry. The concentration dependences of energy and entropy parameters of mixing of Nafion aqueous solutions are determined. It is shown that the Gibbs energy and the enthalpy of mixing are negative while the entropy of mixing is positive over the entire range of solution compositions. The experimental water sorption isotherms and the concentration dependences of the enthalpy of dilution of aqueous solutions are analyzed in terms of the thermodynamic model allowing for pair nonvalence interactions in solution, nonequilibrium glassy structure of the polymer, and effects of the dissociation of ionic sulfo groups of Nafion. The calculated value of the Flory–Huggins parameter is 1.48, and the value of its enthalpy component is close to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Kusoglu and A. Z. Weber, Chem. Rev. 117 (3), 987 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. J. Kim, K. Yamasaki, H. Ishimoto, and Y. Takata, Polymers 1 (3), 1730 (2020).

    Article  Google Scholar 

  3. L. Mazzapioda, VecchioC. Lo, O. Danyliv, V. Baglio, A. Martinelli, and M. A. Navarra, Polymers 12 (3), 2019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. G. Haubold, T. Vad, H. Jungbluth, and P. Hiller, Electrochim. Acta 46 (10), 1559–1563 (2001).

    Article  CAS  Google Scholar 

  5. Perfluorinated Ionomer Membranes, Ed. by H. L. Yeager and A. Eisenberg, ACS Symposium Series (American Chemical Society, Washington DC, 1982), Vol. 180, Chap. 4, p. 41.

    Google Scholar 

  6. K. Schmidt-Rohr and Q. Chen, Nature Mater. 7, 75 (2008).

    Article  CAS  Google Scholar 

  7. N. A. Ivanova, D. D. Spasov, S. A. Grigoriev, and V. N. Fateev, Polymers 14 (20), 4395 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. T. Thampan, S. Malhotra, H. Tang, and R. Datta, J. Electrochem. Soc. 147 (9), 3242 (2000).

    Article  CAS  Google Scholar 

  9. D. R. Morris and X. Sun, J. Appl. Polym. Sci. 50 (8), 1445 (1993).

    Article  CAS  Google Scholar 

  10. M. Pineri, F. Volino, and M. Escoubes, J. Polym. Sci., Polym. Phys. Ed. 23 (10), 2009 (1985).

    Article  CAS  Google Scholar 

  11. T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, J. Electrochem. Soc. 140 (7), 1981 (1993).

    Article  CAS  Google Scholar 

  12. M. Laporta, M. Pegoraro, and L. Zanderighi, Phys. Chem. Chem. Phys. 1 (19), 4619 (1999).

    Article  CAS  Google Scholar 

  13. T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, and S. Gottesfeld, J. Electrochem. Soc. 140 (4), 1041 (1993).

    Article  CAS  Google Scholar 

  14. P. J. James, J. A. Elliott, T. J. McMaster, J. M. Newton, A. M. Elliott, S. Hanna, and M. J. Miles, J. Mater. Sci. 35 (20), 5111 (2000).

    Article  CAS  Google Scholar 

  15. J. T. Hinatsu, M. Mizuhata, and H. Takenaka, J. Electrochem. Soc. 141 (6), 1493 (1994).

    Article  CAS  Google Scholar 

  16. C. Vallieres, D. Winkelmann, D. Roizard, E. Favre, P. Scharfer, and M. Kind, J. Membr. Sci. 278 (1–2), 357 (2006).

    Article  CAS  Google Scholar 

  17. P. Choi and R. Datta, ACS Div. Fuel Chem. Prepr. 48 (1), 300 (2003).

    CAS  Google Scholar 

  18. A. Z. Weber and J. Newman, J. Electrochem. Soc. A 151 (2), 311 (2004).

    Article  Google Scholar 

  19. P. J. Reucroft, D. Rivin, and N. S. Schneider, Polymer 43 (19), 5157 (2002).

    Article  CAS  Google Scholar 

  20. R. L. Benoit and D. Figeys, Can. J. Chem. 69 (12), 1985 (1991).

    Article  CAS  Google Scholar 

  21. M. Noppel, J. Geophys. Res.: Atmospheres 105 (15), 19779 (2000).

    Article  CAS  Google Scholar 

  22. D. M. T. Newsham and E. J. Mendez-Lecanda, J. Chem. Thermodyn. 14 (3), 291 (1982).

    Article  CAS  Google Scholar 

  23. V. E. Ostrovskii and B. V. Gostev, J. Therm. Anal. 46 (2), 397 (1996).

    Article  CAS  Google Scholar 

  24. A. Kusoglu, S. Savagatrup, K. T. Clark, and A. Z. Weber, Macromolecules 45 (18), 7467 (2012).

    Article  CAS  Google Scholar 

  25. M. H. Kim, C. J. Glinka, S. A. Grot, and W. G. Grot, Macromolecules 39 (14), 4775 (2006).

    Article  CAS  Google Scholar 

  26. S. W. Shi, T. J. Dursch, C. Blake, R. Mukundan, R. L. Borup, A. Z. Weber, and A. Kusoglu, J. Polym. Sci., Polym. Phys. Ed. 54 (5), 570 (2016).

    Article  CAS  Google Scholar 

  27. J. S. Li, X. Yang, H. L. Tang, and M. Pan, J. Membr. Sci. 361 (1–2), 38 (2010).

    Article  CAS  Google Scholar 

  28. A. P. Safronov and L. V. Adamova, Polym. Sci., Ser. A 44 (4), 408 (2002).

    Google Scholar 

  29. A. P. Safronov and T. V. Terziyan, Polym. Sci., Ser. A 50 (7), 733 (2008).

    Article  Google Scholar 

  30. R. S. Yeo, Polymer 21 (4), 432 (1980).

    Article  CAS  Google Scholar 

  31. T. H. Mourey, L. A. Slater, R. C. Galipo, and R. J. Koestner, J. Chromatogr., A 1218 (34), 5801 (2011).

  32. A. E. Chalykh, V. K. Gerasimov, and V. G. Chertkov, Vysokomol. Soedin., Ser. B 36 (12), 2077 (1994).

    CAS  Google Scholar 

  33. A. A. Tager, Physical Chemistry of Polymers (Ripol Klassik, Moscow, 1978) [in Russian].

    Google Scholar 

  34. A. P. Safronov, L. V. Adamova, A. S. Blokhina, I. A. Kamalov, and P. A. Shabadrov, Polym. Sci., Ser. A 57 (1), 33 (2015).

    Article  CAS  Google Scholar 

  35. D. Chu, D. Tryk, D. Gervasio, and E. B. Yeager, J. Electroanal. Chem. 272 (1–2), 277 (1989).

    Article  CAS  Google Scholar 

  36. P. Choi, N. H. Jalani, and R. Datta, J. Electrochem. Soc. 152 (3), E123 (2005).

  37. D. Wang and C. J. Cornelius, J. Polym. Sci., Polym. Phys. Ed. 55 (5), 435 (2017).

    Article  CAS  Google Scholar 

  38. K. Shinoda, J. Phys. Chem. 81 (13), 1300 (1977).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.D. Kuznetsova for her help in sorption measurements.

Funding

This work was carried out in accordance with the State Assignment for the Institute of Solid State Chemistry, Urals Branch, Russian Academy of Sciences, theme no. 0320-2019-0005 (Registration number NIOKTR АААА-А19-119102990044-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Chernyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyuk, S.D., Safronov, A.P., Adamova, L.V. et al. Thermodynamics of Interaction between Poly(perfluorosulfonic acid) Nafion and Water. Polym. Sci. Ser. A 65, 119–127 (2023). https://doi.org/10.1134/S0965545X23700839

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700839

Navigation