Skip to main content
Log in

Hydrogels Based on Interpolymer Complexes of Sodium Alginate and Synthetic Polyacids

  • POLYMER GELS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Effect of the structure of synthetic polyacids on the formation and properties of their interpolymer complexes with sodium alginate is investigated. The hydrogels was shown to be predominantly formed via hydrogen bonds, with their type depending on the structure of polyacid and the amount of bound water. Study of the behavior of the hydrogels in water and phosphate-buffed saline with рН 7.2 demonstrates that the properties of the hydrogels are influenced by the ratio of components and the treatment temperature, in addition to the nature of polyacid. The possibility of using hydrogels as a basis for drug delivery systems is examined by the example of preparation lidocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. P. Siqueira, É Siqueira, A. E. De Lima, G. Siqueira, A. D. Pinzón-Garcia, A. P. Lopes, M. E. C. Segura, A. Isaac, F. V. Pereira, and V. R. Botaro, Nanomaterials 9 (1), 78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. A. Haug, Composition and Properties of Alginates (Norwegian Inst. Seaweed Res., Trondheim, 1964).

    Google Scholar 

  3. K. I. Draget, G. Skjak-Braek, and O. Smidsrod, Carbohydr. Polym. 25, 31 (1994).

    Article  CAS  Google Scholar 

  4. T. Wang, F. Zhang, R. Zhao, C. Wang, K. Hu, Y. Sun, C. Politis, and A. Shvandi, Des. Monomers Polym. 23 (1), 118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. X. Wang, T. Hao, J. Qu, C. Wang, and H. Chen, J. Nanomater. Article ID 970619 (2015).

  6. A. W. Chan and R. J. Neufeld, Biomaterials 30, 6119 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Himadri Sekhar, SamantaSamit, and Kumar Ray, Carbohydr. Polym. 99, 666 (2014).

    Google Scholar 

  8. Wenbo Wang, Li Zong, and Aiqin Wang, Int. J. Biol. Macromol. 62, 225 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. M. Z. I. Mollah, A. Han Mubarak, and M. A. Hoque, Carbohydr. Polym. 72 (2), 349 (2008).

    Article  CAS  Google Scholar 

  10. Wu Mingyue, Hu Xiangming, Zhang Qian, and Zhao Yanyun, J. Cleaner Prod. 259, 120870 (2020).

  11. E. Larraneta, Henry M. Megan, N. J. Irwin, J. Trotter, and A. A. Perminova, Carbohydr. Polym. 181, 1194 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Mukherjee, Md. Azamthulla, S. Santhosh, G. Dath, A. Ghosh, R. Natholia, J. Anbu, B. V. Tja, and K. M. Mazammil, J. Drug Delivery Sci. Technol. 46, 498 (2018).

    Article  CAS  Google Scholar 

  13. A. Li, T. Gong, X. Yang, and Y. Guo, Int. J. Biol. Macromol. 151, 257 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Niu, O. Xia, Li Na, Z. Wang, and Yu. Liangli (Lucy), Food Chem. 270, 223 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Rapee Khlibsuwan, Watcharee Khunkitti, and Thaned Pongjanyakul, Int. J. Biol. Macromol. 1481, 1061 (2020).

    Article  Google Scholar 

  16. L. Wang, J. H. Zhang, X. Liu, Y. Liu, X. Zhu, X. Liu, and X. You, ACS Appl. Polym. Mater. 3 (6), 3197 (2021).

    Article  CAS  Google Scholar 

  17. Yu. Long, K. Dean, and L. Li, Prog. Polym. Sci., No. 31, 576 (2006).

  18. T. V. Travinskaya, K. Papadokostaki, Yu. V. Savel’ev, and N. Kanelopoulos, Rep. Nat. Acad. Sci., No. 8, 144 (2008).

  19. I. V. Gusev, Candidate’s Dissertation in Technical Science (Moscow, 2015).

  20. M. Yu. Gorshkova, I. F. Volkova, E. S. Grigoryan, and L. I. Valuev, Polym. Sci., Ser., Ser. B 62 (6), 659 (2020).

    Google Scholar 

  21. I. F. Volkova, M. Yu. Gorshkova, P. E. Ivanov, and L. L. Stotskaya, Polym. Adv. Technol. 13, 67 (2020).

    Google Scholar 

  22. K. Nakanishi, K., Infrared Absorption Spectroscopy (Holden-Day, San Francisco, 1962).

    Google Scholar 

  23. L. J. Bellamy, The Infrared Spectra of Complex Molecules (Methuen, London, 1954).

    Google Scholar 

  24. T. L. Lebedeva, M. M. Feldstein, S. A. Kuptsov, and N. A. Plate, Polym. Sci., Ser. A 42 (9), 989 (2000).

    Google Scholar 

  25. R. M. Silverstein, F. X. Webste, and D. J. Keimle, Spectrometric Identification of Organic Compounds (John Wiley and Sons Inc., 2005).

    Google Scholar 

  26. S. Kavwaguchi, T. Kitano, and K. Ito, Macromolecules 25 (4), 1294 (1992).

    Article  Google Scholar 

  27. S. Kavwaguchi, T. Kitano, and K. Ito, Macromolecules 24 (20), 6030 (1991).

    Article  Google Scholar 

  28. M. Yu. Gorshkova, T. L. Lebedeva, L. V. Chervina, and L. L. Stotskaya, Vysokomol. Soedin., Ser. A 37 (10), 1653 (1995).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.M. Shelonina the employee of the OA Petrov Institute of Plastics for measuring and analysis of IR spectra.

Funding

This work was supported within the framework of State Assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Gorshkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, I.F., Grigoryan, E.S., Shandryuk, G.A. et al. Hydrogels Based on Interpolymer Complexes of Sodium Alginate and Synthetic Polyacids. Polym. Sci. Ser. A 65, 85–95 (2023). https://doi.org/10.1134/S0965545X23700803

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700803

Navigation