Skip to main content
Log in

Structural Evolution and Electrical Property of Polyacrylonitrile-Based Nano and Micro Carbon Fibers

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Most commercial polyacrylonitrile-based carbon fibers are microfibers derived from the wet-spinning or dry-jet wet-spinning polyacrylonitrile fiber. Nano carbon fibers made by electrospinning and post-processing have many advantages over micro carbon fibers in performance, but the research on nano carbon fibers is far from enough. In this work, polyacrylonitrile-based nano- and microfibers obtained by electrospinning and dry-jet wet spinning are converted into nano- and micro carbon fibers under the same pre-oxidation and carbonization conditions. The evolution of morphology, elemental content, functional groups and apparent crystallinity of the two size-scale fibers before and after carbonization are studied. The relationship between their structure and their electrical property is speculated. The results show that pre-oxidized nano fibers’ absorption of visible light is much weaker than microfibers. The oxygen content of the pre-oxidized nanofibers is higher, and the carbon content in the carbonization process is always higher than that of microfibers. The nanofibers are more accessible to crystallize than microfibers. They can obtain better electrical properties than microfibers and have a more excellent application prospect as conductive fillers in antistatic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. I. Filatov, E. Bokova, M. Smulskaya, I. Kapustin, M. Pawlowa, and G. Kovalenko, Fibres Text. East. Eur. 29, 69 (2021).

    Article  CAS  Google Scholar 

  2. C. Cui, Y. Wang, J. Qin. Wang, Y. Yue. Yao, Y. Wang, Q. Wang, Wang, and H. Wei, ECS J. Solid State Sci. Technol. 10, 086302 (2021).

  3. W.-R. Y. Kyoung J. Kim, J. H. Youk, and J. Lee, Carbon 54, 258 (2012).

    Google Scholar 

  4. S. Gao, J.-H. Gu, and Y. Zhang, Chin. J. Inorg. Chem. 26, 55 (2010).

    CAS  Google Scholar 

  5. X. Y. Hong, X. P. Jiang, G. S. Zhu, H. R. Xu, X. Y. Zhang, Y. Y. Zhao, D. L. Yan, J. W. Xu, S. C. Huang, and A. B. Yu, J. Alloys Compd. 832, 153241 (2020).

  6. S. Chen, L. Xu, S. Wang, and A. Shui, J. Synth. Cryst. 42, 322 (2013).

    CAS  Google Scholar 

  7. J. H. He, Y. Liu, and L. Xu, Mater. Sci. Technol. 26, 1275 (2010).

    Article  CAS  Google Scholar 

  8. J.-H. Ha, H. Song, H. Kim, D. Kim, Y. Jeong, and S.‑H. Park, J. Nanosci. Nanotechnol. 21, 1809 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. J. Meinl, M. Kirsten, C. Cherif, and A. Michaelis, Am. J. Anal. Chem. 7, 282 (2016).

    Article  CAS  Google Scholar 

  10. Y. Liu and J. Liu, Mater. Res. Express 6, 068302 (2019).

  11. D. Nurwaha and X. Wang, Fibers Polym. 16, 850 (2015).

    Article  Google Scholar 

  12. T. Ogi, D. Hidayat, F. Iskandar, A. Purwanto, and K. Okuyama, Adv. Powder Technol. 20, 203 (2009).

    Article  CAS  Google Scholar 

  13. J. Qin, C. Wang, R. Lu, S. Su, Z. Yao, L. Zheng, Q. Gao, Y. Wang, Q. Wang, and H. Wei, Compos. Sci. Technol. 195, 108198 (2020).

  14. J. F. Mohammad and S. M. Abed, J. Ovonic Res. 15, 61 (2019).

    CAS  Google Scholar 

  15. W. T. Seeber, M. O. Abou-Helal, S. Barth, D. Beil, T. Hoche, H. H. Afify, and S. E. Demian, Mater. Sci. Semicond. Process. 2, 45 (1999).

    Article  CAS  Google Scholar 

  16. A. Theron, E. Zussman, and A. L. Yarin, Nanotechnology 12, 384 (2001).

    Article  Google Scholar 

  17. M. A. Amaral Junior, J. T. Matsushima, M. C. Rezende, E. S. Gonçalves, J. S. Marcuzzo, and M. R. Baldan, J. Aerospace Technol. Manag. 9, 423 (2017).

    Article  Google Scholar 

  18. C. Wang, Y.-W. Cheng, C.-H. Hsu, H.-S. Chien, and S.-Y. Tsou, J. Polym. Res. 18, 111 (2010).

    Article  Google Scholar 

  19. H. N. Friedlander, L. H. Peebles Jr., J. Brandrup, and J. R. Kirby, Macromolecules 1, 79 (1968).

    Article  CAS  Google Scholar 

  20. S. M. Rao, R. Sukumar, R. E. Joshua, and N. V. Mogili, Bioinspired, Biomimetic Nanobiomater. 9, 241 (2020).

    Article  Google Scholar 

  21. D. Wu, Z. Yao, X. Sun, X. Liu, L. Liu, R. Zhang, and C. Wang, Chem. Eng. J. 429, 0274 (2022).

  22. K. Nasouri and A. M. Shoushtari, Polym. Sci., Ser. A 59, 718 (2017).

    Article  CAS  Google Scholar 

  23. G. Tian, H. Zhang, J. Liu, S. Qi, and D. Wu, Polym. Sci., Ser. A 56, 505 (2014).

    Article  CAS  Google Scholar 

  24. H. H. Zhang, L. W. Guo, H. L. Shao, and X. C. Hu, J. Appl. Polym. Sci. 99, 65 (2006).

    Article  CAS  Google Scholar 

  25. X. Zhang, B. He, J. Li, and Y. Zhang, Cotton Text. Technol. 39, 65 (2011).

    Google Scholar 

  26. M. Bartoli, D. Duraccio, M. G. Faga, E. Piatti, D. Torsello, G. Ghigo, and G. Malucelli, J. Mater. Sci. 57, 14861 (2022).

    Article  CAS  Google Scholar 

  27. J. X. Chen and B. Y. Huang, Trans. Nonferrous Met. Soc. China 14, 733 (2004).

    CAS  Google Scholar 

  28. Z. Xiongling, L. Chenyang, Z. Qian, W. Chen, and Y. Qinchi, IOP Conf. Ser.: Earth Environ. Sci 714, 032035 (2021).

  29. K. M. Omer, B. Al-Hashimi, S. Mohammadi, A. Salimi, Y. M. Salih, A. Q. Hassan, K. H. H. Aziz, and S. J. Mohammad, J. Mater. Sci. 57, 14217 (2022).

    Article  CAS  Google Scholar 

  30. M. Ding, T.-t. Tan, C.-g. Wang, Z.-h. Feng, and Y.‑h. Yang, J. Aeronaut. Mater. 33, 78 (2013).

    Google Scholar 

  31. M. Zhu, M. Yu, Q. Mao, and C. Wang, ECS J. Solid State Sci. Technol. 5, M78 (2016).

    Article  CAS  Google Scholar 

  32. X. Cui, M. Yu, C. Wang, F. Li, and Q. Mao, J. Alloys Compd. 910, 164844 (2022).

  33. L. Lin, Q. Zhou, and M. Li, Polym. Sci., Ser. A 61, 913 (2019).

    Article  CAS  Google Scholar 

  34. S. Li, C. Zhang, J. Fu, Y. Zhou, J. Sun, Y. He, F. Nan, and Z. Yu, Compos. Sci. Technol. 195, 108196 (2020).

  35. Z. Yao, C. Wang, Y. Wang, R. Lu, S. Su, J. Qin, H. Wei, and Q. Wang, J. Mater. Sci. 54, 11841 (2019).

    Article  CAS  Google Scholar 

  36. X. Liang, C. Wang, Z. Yao, Y. Zhang, S. Liu, J. Liu, and M. Yu, J. Alloys Compd. 922, 166299 (2022).

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant nos.: 51773110, 51573087). The authors acknowledge the assistance of Shandong University Testing and Manufacturing Center for Advanced Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meijie Yu or Chengguo Wang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuexin Gao, Wang, Y., Liu, S. et al. Structural Evolution and Electrical Property of Polyacrylonitrile-Based Nano and Micro Carbon Fibers. Polym. Sci. Ser. A 65, 27–35 (2023). https://doi.org/10.1134/S0965545X23700712

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700712

Navigation