Skip to main content
Log in

Characterization of Nanocomposites Based on Poly(ε-caprolactone) Filled with Recycled Red Mill Scale

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Biodegradable poly(ɛ-caprolactone) (PCL), which is used in bioengineering applications thanks to its mechanical and biodegradable properties, it used as a polymer matrix in this study. The nanocomposite of PCL reinforced with recycled red mill scale PCL/RS has been prepared via ultrasonic mixing by solution casting technique at different amounts of RS (1, 5, 10, and 20 wt %), while virgin PCL was also produced for comparison. The structural, thermal, mechanical, and optical behaviors of PCL/RS nanocomposite films have been investigated. Raman spectroscopy shows that small amounts of particles ≤10 wt % may act as nucleation sites for the growth of polymer crystallites; While large amounts of particles will destroy crystallization zones. Blue shifts in spectrum Raman might be caused by the electronic interactions associated with charge transfer between PCL and RS nanoparticles. The XRD results is in good agreement with the Raman results that the crystallinity of esters increases in PCL/RS 10 wt % film. The melting temperature Tm of the nanocomposites is in the order of PCL/RS 1 wt % (71.1°C) > PCL/RS 5 wt % (71°C) > PCL/RS 10 wt % (70.3°C). We note that it has a resemblance in the values established by DRX and DSC, the crystallinity rate increases with the increase in the filler content 45 < 47 < 69 < 74.5. The nanocomposite materials prepared have UV-protective properties. Tensile results increase with an slight increase in RS filler at 5 wt % is 2 MPa, in comparison with PCL/RS 10 wt % (~1 MPa this result yields flexibility of the film and indicates good dispersion of RS in nanocomposite, resulting better interfacial adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. M. F. Al-Hakkani, G. A. Gouda, and S. H. A. Hassan, Heliyon 7, e05806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Philip and S. Kuriakose (2022). https://doi.org/10.21203/rs.3.rs-1380478/v1

  3. A. Perši, N. Popov, L. K. Krehula, and S. Krehula, Materials 16, 706 (2023).

    Article  Google Scholar 

  4. M. V. Nikolic, Z. Z. Vasiljevic, S. Auger, and J. Vidic, Trends Food Sci. Technol. 116, 655 (2021).

    Article  CAS  Google Scholar 

  5. R. A. Ilyas, S. M. Sapuan, M. R. M. Asyraf, D. A. Z. N. Dayana, J. J. N. Amelia, M. S. A. Rani, M. N. F. Norrrahim, N. M. Nurazzi, H. A. Aisyah, S. Sharma, M. R. Ishak, M. Rafidah, and M. R. Razman, Polymers 13, 1701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Ji, Y. Huang, J. Yin, X. Zhao, X. Cheng, S. He, X. Li, J. He, and J. Liu, ACS Appl. Nano Mater. 1, 3935 (2018).

    CAS  Google Scholar 

  7. M. G. M. Schneider, M. J. Martín, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, and M. Nedyalkova, Pharmaceutics 14, 204 (2022).

    Article  Google Scholar 

  8. F. Maggi, S. Dossi, C. Paravan, L. Galfetti, R. Rota, S. Cianfanelli, and G. Marra, Acta Astronaut. 15, 416 (2018).

    Google Scholar 

  9. H. V. Hussain, M. Ahmad, M. T. Ansar, G. M. Mustafa, S. Ishaq, S. Naseem, G. Murtaza, F. Kanwal, and S. Atiq, Synth. Met. 268, 116507 (2020).

    Article  CAS  Google Scholar 

  10. A. Hakeem, T. Alshahrani, I. Ali, M. H. Alhossainy, R. Yasmin Khosa, G. Muhammad, A. R. Khan, and H. M. T. Farid, Chin. J. Phys. 70, 232 (2021).

    Article  CAS  Google Scholar 

  11. J. Jiang, L. Li, and M. Zhu, React. Funct. Polym. 68, 57 (2008).

    Article  CAS  Google Scholar 

  12. D. Romero-Fierro, M. Bustamante-Torres, F. Bravo-Plascencia, H. Magaña, and E. Bucio, Polymers 14, 2467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. F. C. dos Reis, N. A. S. Gomes, M. R. Baldan, B. Ribeiro, and M. C. Rezende, J. Magn. Magn. Mater. 563, 170007 (2022).

    Article  Google Scholar 

  14. L. W. McKeen, The Effect of Long Term Thermal Exposure on Plastics and Elastomers, 2nd ed. (Elsevier, 2021).

    Google Scholar 

  15. G. L. Engler, N. C. Farias, J. S. Crespo, N. M. Gately, I. Major, R. Pezzoli, and D. M. Devine, Polymers 15, 2874 (2023).

    Article  Google Scholar 

  16. Z. Liao, O. Zoumhani, and C. M. Boutry, Materials 16, 3802 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. E. E. Mensah, Z. Abbas, R. S. Azis, N. A. Ibrahim, A. M. Khamis, and D. M. Abdalhadi, Heliyon 6, e05595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Z. Hedayatnasab, A. Dabbagh, F. Abnisa, and W. M. A. Wan Daud, Eur. Polym. J. 133, 109789 (2020).

    Article  CAS  Google Scholar 

  19. F. Serio, N. Silvestri, S. K. Avugadda, G. E. P. Nucci, S. Nitti, V. Onesto, F. Catalano, E. D’Amone, G. Gigli, L. L. Del Mercato, and T. Pellegrino, J. Colloid Interface Sci. 607, 34 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. C. Santhosh, A. Malathi, E. Dhaneshvar, A. Bhatnagar, A. Nirmala Grace, and J. Madhavan, “Iron Oxide Nanomaterials for Water Purification,” in Nanoscale Materials in Water Purification, Micro and Nano Technologies, Ed. by S. Thomas, D. Pasquini, S.-Y. Leu, and D. A. Gopakumar, (Elsevier, 2019), pp. 431–446.

    Google Scholar 

  21. A. C. Fischer-Cripps, “Nanoindentation Testing,” in Nanoindentation (Springer, New York, 2011), pp. 21–38.

    Book  Google Scholar 

  22. A. M. Khamis, Z. Abbas, R. S. Azis, E. E. Mensah, and I. A. Alhaji, Polymers 13, 2332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. E. Mensah, Z. Abbas, R. S. Azis, N. A. Ibrahim, and A. M. Khamis, Polymers 11, 918 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. S. F. Melo, S. C. Neves, A. T. Pereira, I. Borges, P. L. Granja, F. D. Magalhães, and I. C. Gonçalves, Mater. Sci. Eng. C 109, 110537 (2020).

    Article  CAS  Google Scholar 

  25. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  26. L. Bokobza, Polymers 10, 7 (2018).

    Article  Google Scholar 

  27. J. Barbillat, D. Bougeard, G. Buntinx, M. Delhaye, P. Dhamelincourt, and F. Fillaux, “Spectrométrie Raman,” in Technique de l’Ingénieur (1999), p. 2865.

  28. D. Bekana, R. Liu, S. Li, Y. Lai, and J. F. Liu, Anal. Chim. Acta 1006, 74 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. P. C. Panta and C. P. Bergmann, P J. Mater. Sci. Eng. 5, 1000217 (2015).

    Google Scholar 

  30. A. M. Wright, A. Austin, J. Howard, and C. Howard, Polymer 36, 3473 (1995).

    Article  Google Scholar 

  31. A. Kołodziej, E. Długoń, M. Świętek, M. Ziąbka, E. Dawiec, M. Gubernat, M. Michalec, and A. Wesełucha-Birczyńska, J. Compos. Sci. 5, 20 (2021).

    Article  Google Scholar 

  32. W. Xue, Y. Hu, F. Wang, X. Yang, and L. Wang, Colloids Surf., A 564, 115 (2019).

    Article  CAS  Google Scholar 

  33. P. M. Maschhoff, B. M. Geilich, and T. J. Webster, Int. J. Nanomedicine 9, 257 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. N. S. Alghunaim, Results Phys. 5, 331 (2015).

    Article  Google Scholar 

  35. L. Liu, Y. Zhang, C. Li, J. Cao, E. He, X. Wu, F. Wang, and L. Wang, J. Polym. Res. 27, 78 (2020).

    Article  CAS  Google Scholar 

  36. M. E. Gibril, K. K. Ahmed, P. Lekha, B. Sithole, A. Khosla, and H. Furukawa, Microsyst. Technol. 28, 143 (2022).

    Article  Google Scholar 

  37. F. Liu, C. Mao, S. Wu, B. Wang, B. Wu, T. Hu, and X. Gong, Polym. Crystal. 4, e10126 (2021).

    Google Scholar 

  38. C. Zhao, X. Shao, Y. Zhang, and X. Qian, ACS Appl. Mater. Interfaces 8, 30133 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. M. F. Al-Hakkani, G. A. Gouda, and H. A. S. Hassan, Heliyon 7, e05806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. L. A. Marusak, R. Messier, and W. B. White, J. Phys. Chem. Solids 41, 981 (1980).

    Article  CAS  Google Scholar 

  41. P. Nguyen-tri, J. Compos. Sci. 3, 34 (2019).

    Article  CAS  Google Scholar 

  42. S. N. Tripathi, P. Saini, D. Gupta, V. Choudhary, J. Mater. Sci. 48, 6223 (2013).

    Article  CAS  Google Scholar 

  43. A. Perši, N. Popov, L. K. Krehula, and S. Krehula, Compos. Mater. 16, 706 (2023).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Special thanks to Mr. Abdelamine Naitbouda from CDTA and Mr. Djiroue Maamar from CTS Rahmoune society-Chlef.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Djahnit.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leila Djahnit, Maou, S., Soualmi, S. et al. Characterization of Nanocomposites Based on Poly(ε-caprolactone) Filled with Recycled Red Mill Scale. Polym. Sci. Ser. A 65, 778–793 (2023). https://doi.org/10.1134/S0965545X23600382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23600382

Navigation