Skip to main content
Log in

Preparation of Composites Doped with Conducting Polymer, Characterization and Using Them in Adsorption of Some Radioactive Ions

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In this study, the polythiophene (PT) and poly(4-sytrenesulphonic acid)/cis-1,4-polyisoprene/polythiophene (PSS/PI/PT) novel ternary composites at different mass percentages were synthesized by the chemical polymerization method. Iron (III) chloride was used as an oxidant in PT synthesis and monomer/oxidant mole ratio was taken as 1 : 4. The resulting PT and ternary composites were characterized by using various techniques. The conductivity of PT and the ternary composites were measured at room temperature and different temperatures by four probe technique. The conductivity of PT was measured as 4.2 × 10–4 S/cm at room temperature. Formation of PT and the PSS/PI/PT ternary composites were supported by FTIR (Fourier-transform infrared spectrophotometer) bands. It was determined that PT and the composites were polaron from Gouy scale measurements. The surface morphology of the synthesized PT and PSS/PI/PT ternary composites was examined by Scanning Electron Microscopy, and it was observed that the porous and spongy structure was dominant in general. Thermal properties of PT and ternary composites were investigated by thermogravimetric analysis. Adsorption parameters such as pH, temperature, time and amount of adsorbent were determined and optimized for the synthesized composites. Under the determined adsorption conditions, adsorption capacities of the ternary composites were determined for Sr-90 and Pb-210 radioisotopes. The highest adsorption percentage of composite containing 19% PT was 51.11% for Sr-90 and the highest adsorption percentage of composite containing 28% PT was 30.19% for Pb-210.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. S. Raza, X. Li, F. Soyekwo, D. Liao, Y. Xiang, and C. Liu, Eur. Polym. J. 160, 110773 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110773

  2. S. Jadoun, D. S. Rathore, U. Riaz, and N. P. S. Chauhan, Eur. Polym. J. 155, 110561 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110561

  3. Zh. A. Boeva and V. G. Sergeyev, Polym. Sci., Ser. C 56, 144 (2014).

    Article  CAS  Google Scholar 

  4. W. Lövenich, Polym. Sci., Ser. C 56, 135 (2014).

    Article  Google Scholar 

  5. D. S. Dhawale, A. Vinu, and C. D. Lokhande, Electrochim. Acta 56, 9482 (2011).

    Article  CAS  Google Scholar 

  6. S. Palaniappan and S. L. Devi, J. Appl. Polym. Sci. 107, 1887 (2008).

    Article  CAS  Google Scholar 

  7. S. Palaniappan, S. B. Sydulu, and P. Srinivas, J. Appl. Polym. Sci. 115, 1695 (2010).

    Article  CAS  Google Scholar 

  8. A. Subramania and S. L. Devi, Polym. Adv. Technol. 19, 725 (2008).

    Article  CAS  Google Scholar 

  9. J. Moon, V. Diaz, D. Patel, R. Underwood, and R. Warren, Org. Electron. 101, 106412 (2022). https://doi.org/10.1016/j.orgel.2021.106412

  10. K. Namsheer and R. Chandra Sekhar, RSC Adv. 11, 5659 (2021).

    Article  Google Scholar 

  11. S. H. Hosseini and A. A. Entezami, J. Appl. Polym. Sci. 90, 49 (2003).

    Article  CAS  Google Scholar 

  12. B. Massoumi, A. Farnoudian-Habibi, and M. Jaymand, J. Solid State Electrochem. 20, 489 (2016).

    Article  CAS  Google Scholar 

  13. S. Eşsiz and B. Sarı, Adv. Polym. Technol. 33, 21446 (2014).

    Article  Google Scholar 

  14. G. Cao, S. Cai, H. Zhang, Y. Chen, and Y. Tian, ACS Appl. Polym. Mater. 4, 3352 (2022).

    Article  CAS  Google Scholar 

  15. S. Kundakcı, Ö. B. Üzüm, and E. Karadağ, Polym. Compos. 32, 994 (2011).

    Article  Google Scholar 

  16. R. Arora, Mater. Today: Proceed. 45, 5299 (2021).

    CAS  Google Scholar 

  17. A. Mekki, N. Joshi, A. Singh, Z. Salmi, P. Jha, P. Decorse, S. Lau-Truong, R. Mahmoud, M. M. Chehimi, D. K. Aswal, and S. K. Gupta, Org. Electron. 15, 71 (2014).

    Article  CAS  Google Scholar 

  18. N. Joshi, V. Saxena, A. Singh, S. P. Koiry, A. K. Debnath, M. M. Chehimi, D. K. Aswal, and S. K. Gupta, Sens. Actuators, B 200, 227 (2014).

    Article  CAS  Google Scholar 

  19. R. Ramya and P. N. Sudha, Polym. Compos. 34, 233 (2013).

    Article  CAS  Google Scholar 

  20. M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Adv. Colloid Interface Sci. 209, 172 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. E. N. Zare, M. M. Lakouraj, and A. Ramezani, Adv. Polym. Technol. 34, 1 (2015).

    Article  Google Scholar 

  22. E. N. Zare, A. Motaharib, and M. Sillanpää, Environ. Res. 162, 173 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. S. Deng, Adsorption 11, 805 (2005).

    Article  Google Scholar 

  24. F. A. Uğur and H. Sahan, Ekoloji 21 (82), 34 (2012).

    Article  Google Scholar 

  25. M. A. Olatunji, M. U. Khandaker, and H. N. M. Ekramul Mahmud, J. Vinyl Addit. Technol. 24, 347 (2018).

    Article  CAS  Google Scholar 

  26. A. V. Zubareva, A. G. Kravtsov, and S. V. Zotov, Fibre Chem. 44, 372 (2013).

    Article  CAS  Google Scholar 

  27. J. Sang Soo, Y. Soo Jung, L. Kee-Jung, and I. Seung Soon, Polymer 51, 4069 (2010).

    Google Scholar 

  28. N. Ballav and M. Biswas, Polym. Int. 54, 725 (2005).

    Article  CAS  Google Scholar 

  29. A. Özgün, B. Sarı, A. Uygun, H.İ. Ünal, Ç. Çakanyıldırım, Int. J. Polym. Anal. Charact. 14, 469 (2009).

    Article  Google Scholar 

  30. M. Omastova, S. Podhradska, J. Prokes, I. Janigova, and J. Stejskal, Polym. Degrad. Stab. 82, 251 (2003).

    Article  CAS  Google Scholar 

  31. M. R. Karim, C. J. Lee, and M. S. Lee, Polym. Adv. Technol. 18, 916 (2007).

    Article  CAS  Google Scholar 

  32. S. Kıralp and Z. Küçükyavuz, Turk. J. Chem. 27, 417 (2003).

    Google Scholar 

  33. B. Sarı, M. Talu, F. Yıldırım, and E. K. Balcı, Appl. Surf. Sci. 205, 27 (2003).

    Article  Google Scholar 

  34. Ö. Y. Gümüş, H. İ. Ünal, Ö. Erol, and B. Sarı, Polym. Compos. 32, 756 (2011).

    Article  Google Scholar 

  35. N. Zhang, S. Liu, L. Jiang, M. Luo, C. Chi, and J. Ma, J. Radioanal. Nucl. Chem. 303, 1671 (2015).

    CAS  Google Scholar 

  36. I. Smiciklas, I. Coha, M. Jovic, M. Nodilo, I. M. Sljivic-Ivanovic, S. Smiljanic, and Z. Grahek, Nat. Res. 11, 1738 (2021).

    CAS  Google Scholar 

  37. C. H. Jeong, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 36, 1089 (2001)

    Article  CAS  Google Scholar 

  38. S. J. Ahmadi, N. Akbari, Z. Shiri-Yekta, M. H. Mashhadizadeh, and M. Hosseinpour, Korean J. Chem. Eng. 32, 478 (2015).

    Article  CAS  Google Scholar 

  39. S. P. Mishra, S. S. Dubey, and D. Tiwari, J. Radioanal. Nucl. Chem. 261, 457 (2004).

    Article  CAS  Google Scholar 

  40. V. Vesely and V. Pekarek, Talanta 19, 219 (1972).

    Article  CAS  PubMed  Google Scholar 

  41. S. İnan, H. Tel, and Y. Altaş, J. Radioanal. Nucl. Chem. 267, 615 (2006).

    Article  Google Scholar 

  42. S. A. Khan, R. Rehman, and M. A. Khan, Waste Manage. 15, 641 (1995).

    Article  CAS  Google Scholar 

  43. S. Yusan and S. Erentürk, World J. Nucl. Sci. Technol. 1, 6 (2011).

    CAS  Google Scholar 

  44. Y. Nishiyama, T. Hanafusa, J. Yamashita, Y. Yamamoto, and T. Ono, J. Radioanal. Nucl. Chem. 307, 1279 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. X. Xia, J. Shen, F. Caoa, C. Wanga, M. Tanga, Q. Zhanga, and S. Wei, J. Hazard. Mater. 368, 326 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. S. M. Bhosle, S. Ponrathnam, S. S. Tambe, and N. N. Chava, Bull. Mater. Sci. 39, 1541 (2016).

    Article  CAS  Google Scholar 

  47. M. A. Olatunji, M. A. Khandaker, Y. M. Amin, and H. N. M. E. Mahmud, PLoS One 11 (10), 1 (2016).

    CAS  Google Scholar 

  48. C. Özeroğlu and G. Keçeli, J. Radioanal. Nucl. Chem. 268, 211 (2006).

    Article  Google Scholar 

  49. U. Ulusoy and R. Akkaya, J. Hazard. Mater. 163, 98 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. M. R. Karim, C. J. Lee, and M. S. Lee, J. Polym. Sci., Part A: Polym. Chem. 44, 5283 (2006).

    Article  CAS  Google Scholar 

  51. D. Kind and T. R. Hull, Polym. Degrad. Stab. 97, 201 (2012).

    Article  CAS  Google Scholar 

  52. A. Gök, B. Sarı, and M. Talu, Synth. Met. 142, 41 (2004).

    Article  Google Scholar 

  53. R. Patel, S. J. Im, Y. T. Ko, J. H. Kim, and B. R. Min, J. Ind. Eng. Chem. 15, 299 (2009).

    Article  CAS  Google Scholar 

  54. Y. Zhu, S. Xu, L. Jiang, K. Pan, Y. Dan, React. Funct. Polym. 68, 1492 (2008).

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank to Turkish Energy Nuclear and Mineral Research Agency for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Sarı.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aylin Kurt, Eşsiz, S. & Sarı, B. Preparation of Composites Doped with Conducting Polymer, Characterization and Using Them in Adsorption of Some Radioactive Ions. Polym. Sci. Ser. A 64, 882–897 (2022). https://doi.org/10.1134/S0965545X22700596

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700596

Navigation