Skip to main content
Log in

Dynamic-Mechanical and Rheological Properties of the Photo-Degraded Low-Density Polyethylene/Manganese Stearate/Trisilver Phosphate/Cadmium Selenide Composites

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Photodegradable films of low-density polyethylene (LDPE) were prepared by melt blending of the polymer with cadmium selenide (CdSe) and trisilver phosphate (Ag3PO4) as photo-catalysts and manganese stearate as pro-oxidant. The samples were irradiated with visible and ultra-violet light. Scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and viscometry measurements were used to investigate the microstructure of the films. The results showed that the combination of the photo-catalysts and the pro-oxidants has synergistic effect on the photo-degradation of the LDPE and accelerates a lot more its degradation process than when only the pro-oxidant was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Y. Chen, A. K. Awasthi, F. Wei, Q. Tan, J. Li, Sci. Total Environ. 752, 141772 (2020).

  2. A. C. Albertsson, J. Appl. Polym. Sci. 22, 3419 (1978).

    Article  CAS  Google Scholar 

  3. A. C. Albertsson and Z. Banhidi, J. Appl. Polym. Sci. 25, 1655 (1980).

    Article  CAS  Google Scholar 

  4. A. C. Albertsson, Z. Baanhidi, and L. L. Beyer-Ericsson, J. Appl. Polym. Sci. 22, 3435 (1978).

    Article  CAS  Google Scholar 

  5. A.-C. Albertsson, S. O. Andersson, and S. Karlsson, Polym. Degrad. Stab. 18, 73 (1987).

    Article  CAS  Google Scholar 

  6. T. R. Curlee and S. Das, Resour., Conserv. Recycl. 5, 343 (1991).

    Article  Google Scholar 

  7. P. Umaraw, P. E. Munekata, A. K. Verma, F. J. Barba, V. Singh, P. Kumar, and J. M. Lorenzo, Trends Food Sci. Technol. 98, 10 (2020).

    Article  CAS  Google Scholar 

  8. S. Kalia, A. Dufresne, B. M. Cherian, B. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, Int. J. Polym. Sci. 2011, 837875 (2011). https://doi.org/10.1155/2011/837875

  9. N. Follain, C. Joly, P. Dole, and C. Bliard, J. Appl. Polym. Sci. 97, 1783 (2005).

    Article  CAS  Google Scholar 

  10. B. Saberi, R. Thakur, Q. V. Vuong, S. Chockchaisawasdee, J. B. Golding, C. J. Scarlett, and C. E. Stathopoulos, Ind. Crops Prod. 86, 342 (2016).

    Article  CAS  Google Scholar 

  11. L. Ren, X. Yan, J. Zhou, J. Tong, and X. Su, Int. J. Biol. Macromol. 105, 1636 2017.

    Article  CAS  PubMed  Google Scholar 

  12. G.-Z. Yin and X.-M. Yang, J. Polym. Res. 27, 1 (2020).

    Article  Google Scholar 

  13. J. Wróblewska-Krepsztul, T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, and V. K. Thakur, Int. J. Polym. Anal. Charact. 23, 383 (2018).

    Article  Google Scholar 

  14. J. Rydz, M. Musioł, B. Zawidlak-Węgrzyńska, and W. Sikorska, in Biopolymers for Food Design, Ed. by A. M. Grumezescu and A. M. Holban (Elsevier, Amsterdam, 2018), p. 431.

    Google Scholar 

  15. A. S. Luyt and S. S. Malik, in Plastics to Energy, Ed. by S. M. Al-Salem (Elsevier, Amsterdam, 2019).

    Google Scholar 

  16. D. G. Hayes, M. B. Anunciado, J. M. DeBruyn, S. Bandopadhyay, S. Schaeffer, M. English, S. Ghimire, C. Miles, M. Flury, and H. Y. Sintim, in Polymers for Agri-Food Applications (Springer, Cham, 2019).

    Google Scholar 

  17. Y. V. Vazquez, J. A. Ressia, M. L. Cerrada, S. E. Barbosa, and E. M. Valles, J. Polym. Environ. 27, 464 (2019).

    Article  CAS  Google Scholar 

  18. P. Rizzarelli, M. Rapisarda, L. Ascione, F. Degli Innocenti, and F. P. La Mantia, Polym. Degrad. Stab. 188, 109578 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109578

  19. I. Jakubowicz, Polym. Degrad. Stab. 80, 39 (2003).

    Article  CAS  Google Scholar 

  20. F. Khabbaz and A. -C. Albertsson, J. Appl. Polym. Sci. 79, 2309 (2001).

    Article  CAS  Google Scholar 

  21. G. M. Ferguson, M. Hood, and K. Abbott, Polym. Int. 28, 35 (1992).

    Article  CAS  Google Scholar 

  22. C. David, M. Trojan, A. Daro, and W. Demarteau, Polym. Degrad. Stab. 37, 233 (1992).

    Article  CAS  Google Scholar 

  23. P. Roy, P. Surekha, C. Rajagopal, and V. Choudhary, eXPRESS Polym. Lett. 1, 208 (2007).

    Article  CAS  Google Scholar 

  24. Y.-Z. Wang, K.-K. Yang, X.-L. Wang, Q. Zhou, C.‑Y. Zheng, and Z.-F. Chen, J. Polym. Environ. 12, 7 (2004).

    Article  Google Scholar 

  25. P. K. Roy, M. Hakkarainen, I. K. Varma, and A.‑C. Albertsson, Environ. Sci. Technol. 45, 4217 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. P. Tribedi and S. Dey, Environ. Monitor. Assess. 189, 1 (2017).

    Article  CAS  Google Scholar 

  27. F. Magalhães, F. C. Moura, and R. M. Lago, Desalination 276, 266 (2011).

    Article  Google Scholar 

  28. J. Liu, X. Fu, S. Chen, and Y. Zhu, Appl. Phys. Lett. 99, 191903 (2011). https://doi.org/10.1063/1.3660319

  29. W. Wu, F. He, and Y. Wang, J. Appl. Phys. 119, 055701 (2016). https://doi.org/10.1063/1.4941019

  30. P. K. Roy, P. Singh, D. Kumar, and C. Rajagopal, J. Appl. Polym. Sci. 117, 524 (2010).

    CAS  Google Scholar 

  31. A. S. Babetto, M. C. Antunes, S. H. Bettini, and B. C. Bonse, J. Polym. Environ. 28, 699 (2020).

    Article  CAS  Google Scholar 

  32. G. Sunil, Y. Yang, A. Jae-Hyung, and H. Hor-Gil, Appl. Biol. Chem. 63 (2020).

  33. P.-Q. Wang, Y. Bai, P.-Y. Luo, and J.-Y. Liu, Micro Nano Lett. 8, 340 (2013).

    Article  CAS  Google Scholar 

  34. A. E. Raevskaya, A. L. Stroyuk, and S. Y. Kuchmiy, J. Colloid Interface Sci. 302, 133 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. M. Sebaa, C. Servens, and J. Pouyet, J. Appl. Polym. Sci. 47, 1897 (1993).

    Article  CAS  Google Scholar 

  36. L. Ragnarsson and A. -C. Albertsson, Biomacromolecules 4, 900 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. M. Aldas, A. Paladines, V. Valle, M. Pazmiño, and F. Quiroz, Int. J. Polym. Sci. 2018, 44 (2018).

    Article  Google Scholar 

  38. M. Hakkarainen, S. Karlsson, and A.-C. Albertsson, Polymer 41, 2331 (2000).

    Article  CAS  Google Scholar 

  39. S. R. Andersson, M. Hakkarainen, and A.-C. Albertsson, Polym. Degrad. Stab. 97, 914 (2012).

    Article  CAS  Google Scholar 

  40. A. C. Albertsson, M. Hakkarainen, L. Burman, M. Gröning, and C. Strandberg, Chromatography for Sustainable Polymeric Materials: Renewable, Degradable and Recyclable (Springer, Berlin; Heidelberg, 2008).

    Book  Google Scholar 

  41. W. Ho and C. Y. Jimmy, J. Mol. Catal., A: Chem. 247, 268 (2006).

    Article  CAS  Google Scholar 

  42. Y. P. Khanna, E. A. Turi, T. J. Taylor, V. V. Vickroy, and R. F. Abbott, Macromolecules 18, 1302 (1985).

    Article  CAS  Google Scholar 

  43. H. Zhou and G. L. Wilkes, Macromolecules 30, 2412 (1997).

    Article  CAS  Google Scholar 

  44. K. Kuwabara, H. Kaji, and F. Horii, Macromolecules 33, 4453 (2000).

    Article  CAS  Google Scholar 

  45. I. S. Kolesov, R. Androsch, and H.-J. Radusch, Macromolecules 38, 445 (2005).

    Article  CAS  Google Scholar 

  46. Y. Cheng, and G. Yu, Polymers 12, 563 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. H. L. Shen and P. C. Zhou, Adv. Mater. Res. 1081, 8 (2014).

    Google Scholar 

  48. J. P. Jose, L. Chazeau, J.-Y. Cavaillé, K. Varughese, and S. Thomas, RSC Adv. 4, 31643 (2014).

    Article  CAS  Google Scholar 

  49. N. R. M. Aras and I. M. Arcana, AIP Conf. Proceed. 2015, 070024 (2015).

  50. S. Wang and J. Zhang, J. Therm. Anal. Calorim. 115, 63 (2014).

    Article  CAS  Google Scholar 

  51. M. Mansfield and R. H. Boyd, J. Polym. Sci., Polym. Phys. Ed. 16, 1227 (1978).

    Article  CAS  Google Scholar 

  52. Z. Horvath, I. Sajo, K. Stoll, A. Menyhard, and J. Varga, eXPRESS Polym. Lett. 4, 101 (2010).

    Article  CAS  Google Scholar 

  53. C. D. Han, Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology (Oxford Univ. Press, Oxford, 2007).

  54. S.-Q. Liu, W.-G. Gong, and B.-C. Zheng, J. Macromol. Sci., Part B: Phys. 53, 67 2014.

    Article  Google Scholar 

  55. A. Cabeza, F. Sobrón, F. Yedro, and J. García-Serna, Fuel 148, 212 (2015).

    Article  CAS  Google Scholar 

  56. P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, and J. Criado, Polym. Degrad. Stab. 94, 2079 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mortazavi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolnaser Gharehdashli, Mortazavi, S. & Rashidi, H. Dynamic-Mechanical and Rheological Properties of the Photo-Degraded Low-Density Polyethylene/Manganese Stearate/Trisilver Phosphate/Cadmium Selenide Composites. Polym. Sci. Ser. A 64, 872–881 (2022). https://doi.org/10.1134/S0965545X22700560

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700560

Navigation