Skip to main content
Log in

The Effect of Cellulose Nanocrystals and Acetylated Nanocellulose on the Crystallization Kinetics and Thermal Stability of Polylactic Acid

  • POLYMER BLENDS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In this work, acetylated nanocellulose (ANC) were prepared by acetylation of cellulose nanocrystals (CNC), and the polylactic acid/CNC (PLA/CNC) and PLA/ANC composites were prepared by solution blending method. Then the effects of CNC and ANC on the crystallization kinetics and thermal stability of PLA were studied by differential scanning calorimetry (DSC), polarized light microscope (POM) and thermogravimetric analysis (TGA). DSC results indicate that no crystallization behavior occurs during the cooling process from melt, but cold crystallization peak appears in the heating curve. With the addition of CNC, the temperature of cold crystallization increases. With the addition of ANC, the crystallization behavior can be observed during cooling process and the cold crystallization temperature decreases, indicating that the adding of ANC promotes the crystallization ability dramatically. The POM results show that both CNC and ANC can promote the nucleation density of PLA crystals. In terms of isothermal crystallization after cooling at 300°C/min, the addition of CNC has little positive effect on the crystallization rate of PLA, while the crystallization rate is significantly improved by the addition of ANC. In addition, CNC can slightly promote the maximum thermal decomposition temperature of PLA, while ANC can’t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. G.-Z. Yin and X.-M. Yang, J. Polym. Res. 27, 38 (2020).

    Article  CAS  Google Scholar 

  2. V. Nagarajan, K. Zhang, M. Misra, and A. K. Mohanty, ACS Appl. Mater. Interfaces 7, 11203 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Y. Zhang, J. Chen, Q. Peng, L. Song, Z. Wang, and Z. Wang, Appl. Surf. Sci. 506, 144684 (2020). https://doi.org/10.1016/j.apsusc.2019.144684

  4. C. Li, S. Luo, J. Wang, H. Wu, S. Guo, and X. Zhang, Biomacromolecules 18, 1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. C. Li and Q. Dou, Polym. Adv. Technol. 26, 376 (2015).

    Article  CAS  Google Scholar 

  6. Y. Li, C. Han, Y. Yu, L. Xiao, and Y. Shao, J. Therm. Anal. Calorim. 131, 2213 (2017).

    Article  Google Scholar 

  7. F. M. Pereira, S. V. Canevarolo, and M. A. Chinelatto, Polym. Eng. Sci. 59, E161 (2019).

  8. H. Liu, W. Zhou, P. Chen, D. Bai, Y. Cai, and J. Chen, Polymer 210, 122873 (2020).

  9. W. Kong, B. Zhu, F. Su, Z. Wang, C. Shao, Y. Wang, C. Liu, and C. Shen, Polymer 168, 77 (2019).

    Article  CAS  Google Scholar 

  10. Y. Baimark, S. Pasee, W. Rungseesantivanon, and N. Prakymoramas, J. Polym. Res. 26, article no. 218 (2019). https://doi.org/10.1007/s10965-019-1881-7

  11. Y. Wang, L. Liang, Z. Du, Y. Wang, C. Liu, and C. Shen, J. Mater. Sci.: Mater. Electron. 227, 25952 (2021).

    Google Scholar 

  12. Q. Zhao, B. Wang, C. Qin, Q. Li, C. Liu, C. Shen, and Y. Wang, J. Therm. Anal. Calorim. 25, 101632 (2020).

  13. W. Kong, B. Tong, A. Ye, R. Ma, J. Gou, Y. Wang, C. Liu, and C. Shen, J. Therm. Anal. Calorim. 135, 3107 (2018).

    Article  Google Scholar 

  14. Q. Xie, L. Han, G. Shan, Y. Bao, and P. Pan, ACS Sustainable Chem. Eng. 4, 2680 (2016).

    Article  CAS  Google Scholar 

  15. S. Qin, Y. Hu, X. Tian, Y. Tian, W. Liu, and L. Zhao, Cellulose 27, 4337 (2020).

    Article  CAS  Google Scholar 

  16. D. Miyashiro, R. Hamano, and K. Umemura, Nanomaterials 10, 186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Li, C. Han, Y. Yu, and L. Xiao, Int. J. Biol. Macromol. 147, 34 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. M. Mariano, N. El Kissi, and A. Dufresne, Langmuir 32, 10093 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. C. Magnani, A. Idstrom, L. Nordstierna, A. J. Muller, P. Dubois, J. M. Raquez, and G. Lo Re, Biomacromolecules 21, 1892 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. S. Wohlhauser, T. Kuhnt, W. Meesorn, L. Montero de Espinosa, J.O. Zoppe, and C. Weder, Macromolecules 53, 821 (2020).

    Article  CAS  Google Scholar 

  21. H. Abushammala, Polymers 12, 95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Abushammala and J. Mao, Crystals 10, 196 (2020).

    Article  CAS  Google Scholar 

  23. R. F. S. Barbosa, A. G. Souza, F. F. Ferreira, and D. S. Rosa, Carbohydr. Polym. 218, 208 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. J. A. Avila Ramirez, E. Fortunati, J. M. Kenny, L. Torre, and M. L. Foresti, Carbohydr. Polym. 157, 1358 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. M. Beaumont, P. Jusner, N. Gierlinger, A. W. T. King, A. Potthast, O. J. Rojas, and T. Rosenau, Nat. Commun. 12, 2513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Q. Chen, Y. Shi, G. Chen, and M. Cai, Int. J. Biol. Macromol. 142, 846 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. N. M. Girouard, S. Xu, G. T. Schueneman, M. L. Shofner, and J. C. Meredith, ACS Appl. Mater. Interfaces 8, 1458 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. M. Le Gars, A. Delvart, P. Roger, M. N. Belgacem, and J. Bras, Colloid Polym. Sci. 298, 603 (2020).

    Article  CAS  Google Scholar 

  29. S. Fujisawa, T. Saito, S. Kimura, T. Iwata, and A. Isogai, Compos. Sci. Technol. 90, 96 (2014).

    Article  CAS  Google Scholar 

  30. E. L. de Paula, F. Roig, A. Mas, J.-P. Habas, V. Mano, F. V. Pereira, and J.-J. Robin, Eur. Polym. J. 84, 173 (2016).

    Article  CAS  Google Scholar 

  31. E. Lizundia, J. L. Vilas, and L. M. Leon, Carbohydr. Polym. 123, 256 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. H. Wu, S. Nagarajan, J. Shu, T. Zhang, L. Zhou, Y. Duan, and J. Zhang, Carbohydr. Polym. 197, 204 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. C. Miao and W.Y. Hamad, Carbohydr. Polym. 153, 549 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Y. Habibi, A.-L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, and A. Dufresne, J. Mater. Chem. 18, 5002 (2008).

    Article  CAS  Google Scholar 

  35. E. Lizundia, E. Fortunati, F. Dominici, J. L. Vilas, K. M. Leon, I. Armentano, L. Torre, and J. M. Kenny, Carbohydr. Polym. 142, 105 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. S. Fujisawa, J. Zhang, T. Saito, T. Iwata, and A. Isogai, Polymer. 55, 2937 (2014).

    Article  CAS  Google Scholar 

  37. N. Jamaluddin, T. Kanno, T.-A. Asoh, and H. Uyama, Mater. Today Commun. 21, 100587 (2019). https://doi.org/10.1016/j.mtcomm.2019.100587

  38. M. Jonoobi, A. P. Mathew, M. M. Abdi, M. D. Makinejad, and K. Oksman, J. Polym. Environ. 20, 991 (2012).

    Article  CAS  Google Scholar 

  39. N. Lin, J. Huang, P.R. Chang, J. Feng, and J. Yu, Carbohydr. Polym. 83, 1834 (2012).

    Article  Google Scholar 

  40. L. Cheng, Y. F. Qu, and Y. Yuan, J. Qingdao Univ. Sci. Technol., Nat. Sci. Ed. 42, 62 (2021).

    Google Scholar 

  41. R. F. S. Barbosa, A. G. Souza, and D. S. Rosa, Polym. Compos. 41, 2841 (2020).

    Article  CAS  Google Scholar 

  42. A. Pei, Q. Zhou, and L. A. Berglund, Compos. Sci. Technol. 70, 815 (2010).

    Article  CAS  Google Scholar 

  43. J. Yu and Z. Qiu, Ind. Eng. Chem. Res. 50, 12579 (2011).

    Article  CAS  Google Scholar 

  44. E. Espino-Pérez, J. Bras, V. Ducruet, A. Guinault, A. Dufresne, and S. Domenek, Eur. Polym. J. 49, 3144 (2013).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Program no. 2021JM-431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Luo.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minggang Fang, Luo, C., Guo, X. et al. The Effect of Cellulose Nanocrystals and Acetylated Nanocellulose on the Crystallization Kinetics and Thermal Stability of Polylactic Acid. Polym. Sci. Ser. A 64, 802–817 (2022). https://doi.org/10.1134/S0965545X22700523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700523

Navigation