Skip to main content
Log in

Nano-Scale Pores are Formed between the Shish-Kebab Structures of Double-Mold Polyethylene by Supercritical Carbon Dioxide Foaming

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

A new method incorporating dynamic polymer processing and supercritical CO2 was adopted to foam the bimodal polyethylene (BPE) with a nano-cellular structure. The shish-kebab crystallites with high strength were introduced with a dynamic polymer processing of injection-molding. Deliberate reservation of shish-kebab crystals in the foaming was systematically investigated at different foaming temperatures and pressures. Morphology of nano-pores existing together with residual shish-kebab crystals was found. The foaming temperatures of 120, 125, 128, and 130°C were suitable for inducing the nano-cellular structures. With increasing the foaming temperature, the cell changed from a slit-like shape to a round shape, because the melting and recrystallization content of the microcrystals in the kebabs are different. The crystallinity and the melting point increased with the increasing foaming temperature, while the orientation degree showed a downward trend. Different foaming pressures of 15.4, 18.6, 20.0, and 22.5 MPa performed at 128°C were adopted to examine foaming pressure effects. With increasing the pressure, the crystallinity, the melting point, and the degree of orientation showed a slight drop. In the aspect of mechanical properties, the foamed samples exhibit higher flexibility compared with unfoamed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. R. Berens, G. S. Huvard, R. W. Korsmeyer, and F. W. Kunig, J. Appl. Polym. Sci. 46, 231 (1992).

    Article  CAS  Google Scholar 

  2. K. A. Arora, A. J. Lesser, and T. J. McCarthy, Macromolecules 31, 4614 (1998)

    Article  CAS  Google Scholar 

  3. J. D. McRae, H. E. Naguib, and N. Atalla, J. Appl. Polym. Sci. 116, 1106 (2010).

    CAS  Google Scholar 

  4. F. d. J. Guevara-Rodríguez and A. Romero-Martínez, Fluid Phase Equilib. 347, 22 (2013).

    Article  Google Scholar 

  5. B. Li, G.-H. Hu, G.-P. Cao, T. Liu, L. Zhao, and W.‑K. Yuan, J. Appl. Polym. Sci. 102, 3212 (2006).

    Article  CAS  Google Scholar 

  6. S. Asai, Y. Shimada, Y. Tominaga, and M. Sumita, Macromolecules 38, 6544 (2005).

    Article  CAS  Google Scholar 

  7. G.-S. Tong, T. Liu, G.-H. Hu, L. Zhao, and W.-K. Yuan, J. Supercrit. Fluids 43, 64 (2007).

    Article  CAS  Google Scholar 

  8. V. Kumar, and N. P. Suh, Polym. Eng. Sci. 30, 1323 (1990).

    Article  CAS  Google Scholar 

  9. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda, and P. Sonntag, Prog. Polym. Sci. 41, 122 (2015).

    Article  CAS  Google Scholar 

  10. J.-B. Bao, T. Liu, L. Zhao, and G.-H. Hu, J. Supercrit. Fluids 55, 1104 (2011).

    Article  CAS  Google Scholar 

  11. R. Miyamoto, S. Yasuhara, H. Shikuma, and M. Ohshima, Polym. Eng. Sci. 54, 2075 (2014).

    Article  CAS  Google Scholar 

  12. S. K. Goel, and E. J. Beckman, Polym. Eng. Sci. 34, 1148 (1994).

    Article  CAS  Google Scholar 

  13. S. Siripurapu, J. M. DeSimone, S. A. Khan, and R. J. Spontak, Adv. Mater. 16, 989 (2004).

    Article  CAS  Google Scholar 

  14. B. Krause, G. H. Koops, N. F. A. van der Vegt, M. Wessling, M. Wubbenhorst, and J. van Turnhout, Adv. Mater. 14, 1041 (2002).

    Article  CAS  Google Scholar 

  15. X. Liao, C. Wang, and X. Cao, Adv. Mater. Res. 781–784, 395 (2013).

    Article  Google Scholar 

  16. T. Nemoto, J. Takagi, and M. Ohshima, Macromol. Mater. Eng. 293, 574 (2008).

    Article  CAS  Google Scholar 

  17. X. Xu, C. B. Park, D. Xu, and R. Pop-Iliev, Polym. Eng. Sci. 43, 1378 (2003).

    Article  CAS  Google Scholar 

  18. Z.-M. Xu, X.-L. Jiang, T. Liu, G.-H. Hu, L. Zhao, Z.‑N. Zhu, and W.-K. Yuan, J. Supercrit. Fluids 41, 299 (2007).

    Article  CAS  Google Scholar 

  19. D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert, L. J. Lee, and K. W. Koelling, Ind. Eng. Chem. Res. 42, 6431 (2003).

    Article  CAS  Google Scholar 

  20. B. H. Yokoyama, L. Li, T. Nemoto, and K. Sugiyama, Adv. Mater. 16, 1542 (2004).

    Article  CAS  Google Scholar 

  21. L. Geng, L. Li, H. Mi, B. Chen, P. Sharma, H. Ma, B. S. Hsiao, X. Peng, and T. Kuang, ACS Appl. Mater. Interfaces 9, 21071 (2017).

    Article  CAS  Google Scholar 

  22. J.-b. Bao, T. Liu, L. Zhao, D. Barth, and G.-H. Hu, Ind. Eng. Chem. Res. 50, 13387 (2011).

    Article  CAS  Google Scholar 

  23. H.-Y. Mi, J.-W. Chen, L.-H. Geng, B.-Y. Chen, X. Jing, and X.-F. Peng, Mater. Lett. 167, 274 (2015).

    Article  Google Scholar 

  24. D. Bie, L. Jiang, M. Zhu, W. Miao, and Z. Wang, Polym. Sci., Ser. A 61, 627 (2019).

    Article  CAS  Google Scholar 

  25. J.-B. Bao, T. Liu, L. Zhao, G.-H. Hu, X. Miao, and X. Li, Polymer 53, 5982 (2012).

    Article  CAS  Google Scholar 

  26. A. P. Hammersley, O. Svensson, and A. Thompson, Nucl. Instrum. Methods Phys. Res., Sect. A 346, 312 (1994).

    CAS  Google Scholar 

  27. R. H. Somani, L. Yang, and B. S. Hsiao, Polymer 47, 5657 (2006).

    Article  CAS  Google Scholar 

  28. D. I. Collias, D. G. Baird, and R. J. M. Borggreve, Polymer 35, 3978 (1994).

    Article  CAS  Google Scholar 

  29. J. Weller and V. Kumar, Polym. Eng. Sci. 50, 2170 (2010).

    Article  CAS  Google Scholar 

  30. L.-Q. Xu and H.-X. Huang, Ind. Eng. Chem. Res. 53, 2277 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (nos. 51773101, 51973097), the Natural Science Foundation of Zhejiang Province (no. LZ21E030001), S&T Innovation 2025 Major Special Programme of Ningbo (no. 2019B10092), and the Natural Science Foundation of Ningbo Municipal (no. 202003N4104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbao Wang.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Bie, D., Shi, D. et al. Nano-Scale Pores are Formed between the Shish-Kebab Structures of Double-Mold Polyethylene by Supercritical Carbon Dioxide Foaming. Polym. Sci. Ser. A 63, 664–671 (2021). https://doi.org/10.1134/S0965545X21060122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21060122

Navigation