Skip to main content
Log in

Influence of the Crystalline Structure of Components and the Boundary Layer between Them on Mechanical Properties of Polypropylene–High Density Polyethylene Composites

  • POLYMER BLENDS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Blends of isotactic PP and HDPE of various compositions are prepared by melt extrusion in two crystallization modes. The first series of composites is obtained by a rapid cooling of the melt (≈8000°C/min). According to X-ray diffraction and microscopy studies, pure PP forms a smectic mesophase under these conditions. In contrast, the PP component in the blends crystallizes in the form of monoclinic α crystals into spherulites with a diameter of ~4–5 µm. The PE component of the composites has a lower enthalpy of melting than pure PE, and it decreases with an increase in the PP content in the system. This may be due to formation of the interphase layer where PE and PP molecules are intermixed at the molecular level. Estimation according to the Gelfand theory shows that the thickness of the boundary layer in the composites of the first series is about 30 nm. The second series of composites is obtained by a slow cooling of the melt (≈2°C/min). All samples of this series contain large (~80–120 µm) radial spherulites, but in the blends, their size is somewhat smaller than that in pure PP. The enthalpy of melting of PE and PP components in the blends of the second series does not depend on composition and is equal to the corresponding values for pure PE and PP. Apparently, upon slow cooling of the melt of two polyolefins, the molecules from the interphase layer have time to move to the corresponding domains and an ordinary two-phase system without a “transition” zone is formed. Owing to the developed interfacial zone in the composites of the first series, the phases are deformed together and these materials show a good deformation behavior. In the composites of the second series, all mechanical parameters are worse than those of pure polymers and blends of the first series (the “antagonistic effect”) because of the absence of an extended boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. W. Teh, A. Rudin, and J. C. Keung, Adv. Polym. Technol. 13, 1 (1994).

    Article  CAS  Google Scholar 

  2. A. Graziano, S. Jaffer, and M. Sain, J. Elastomers Plast. 51, 291 (2019).

    Article  CAS  Google Scholar 

  3. N. A. Erina and E. V. Prut, Polym. Sci., Ser. A 42, 183 (2000).

    Google Scholar 

  4. T. G. Mofokeng, V. Ojijo, and S. S. Ray, Macromol. Mater. Eng. 301, 1191 (2016).

    Article  CAS  Google Scholar 

  5. M. Krishevski, T. Pakula, and Ya. Grembovich, Vysokomol. Soedin., Ser. A 26, 1569 (1974).

    Google Scholar 

  6. S. Jose, A. S. Aprem, B. Francis, M. C. Chandy, P. Werner, V. Alstaedt, and S. Thomas, Eur. Polym. J. 40, 2105 (2004).

    Article  CAS  Google Scholar 

  7. J. Krajenta, A. Pawlak, and A. Gałeski, Polimery 60, 664 (2015).

    Article  Google Scholar 

  8. L. Nielsen and E. Lawrence, Mechanical Properties of Polymers and Composites (Marcel Dekker, New York, 1974).

    Google Scholar 

  9. J. Manson and L. Sperling, Polymer Blends and Composites (Acad. Press, New York, 1976).

    Book  Google Scholar 

  10. S. Wu, Polym. Eng. Sci. 27, 335 (1987).

    Article  CAS  Google Scholar 

  11. I. P. Miichenko, Technology of Semi-Products of Polymer Materials. Manual (Nauch. Osnovy i Tekhnol., St. Petersburg, 2012) [in Russian].

    Google Scholar 

  12. V. N. Kuleznev, Blends and Alloys of Polymers (Nauch. Osnovy i Tekhnol., St. Petersburg, 2013) [in Russian].

    Google Scholar 

  13. Q. Zia, H.-J. Radusch, and R. Androsch, Polym. Bull. 63, 755 (2009).

    Article  CAS  Google Scholar 

  14. D. W. Van Krevelen, Properties of Polymers Correlations with Chemical Structure (Elsevier, Amsterdam; London; New York, 1972).

    Google Scholar 

  15. L. Mandelkern, Crystallization of Polymers (McGraw-Hill, New York; San-Francisco; Toronto; London, 1964).

  16. J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, in Treatise on Solid State Chemistry (Springer, Boston, 1976), Vol. 3, p. 497.

    Google Scholar 

  17. D. Libster, A. Aserin, and N. Garti, Polym. Adv. Technol. 18, 685 (2007).

    Article  CAS  Google Scholar 

  18. C. Marco, M. A. Gómez, G. Ellis, and J. M. Arribas, J. Appl. Polym. Sci. 84, 1669 (2002).

    Article  CAS  Google Scholar 

  19. M. V. Glikshtern, Polim. Mater., No. 6, 13 (2002).

  20. C. Marco, M. A. Gomez, G. Ellis, and J. M. Arribas, J. Appl. Polym. Sci. 86, 531 (2002).

    Article  CAS  Google Scholar 

  21. X. Li, K. Hu, M. Ji, Y. Huang, and G. Zhou, J. Appl. Polym. Sci. 86, 633 (2002).

    Article  CAS  Google Scholar 

  22. K. Hoffmann, G. Huber, and D. Mäder, Macromol. Symp. 176, 83 (2001).

    Article  CAS  Google Scholar 

  23. J. Li, J. Xu, and M. J. Mannion, US Patent No. 7781511 (2010).

  24. E. Helfand and Y. Tagami, J. Polym. Sci., Part B: Polym. Phys. 9, 741 (1971).

    CAS  Google Scholar 

  25. E. Helfand, and Y. Tagami, J. Chem. Phys. 56, 3592 (1972).

    Article  CAS  Google Scholar 

  26. A. M. C. Souza and N. R. Demarquette, Polymer 43, 1313 (2002).

    Article  CAS  Google Scholar 

  27. E. M. Antipov, Doctoral Dissertation in Chemistry (INKhS RAN, Moscow, 1990).

  28. M. Rubinstein and R. Colby, Polymer Physics (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  29. Yu. S. Lipatov, Interfacial Phenomena in Polymers (Naukova dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  30. A. Yu. Grosberg and A. R. Khokhlov, Physics in Polymer World (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-03-00168-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Guseva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shklyaruk, B.F., Gerasin, V.A., Guseva, M.A. et al. Influence of the Crystalline Structure of Components and the Boundary Layer between Them on Mechanical Properties of Polypropylene–High Density Polyethylene Composites. Polym. Sci. Ser. A 63, 533–541 (2021). https://doi.org/10.1134/S0965545X21050138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21050138

Navigation