Skip to main content
Log in

Effect of Acid Dopants Toward Polyaniline Based Optical Sensor for Lead Detection

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

A novel polyaniline (PAni) coated optical fiber sensor with Mach-Zehnder interferometers (MZI) configuration was developed to overcome the pitfalls of conventional sensing methods such as atomic absorption spectrometry (AAS), and anodic stripping voltammetry (ASV) in Pb detection. PAni with different Ani to AOT mixture ratios (5 : 3, 5 : 5, and 5 : 7) and different types of acid dopants (HCl, H2SO4 and H3PO4) were synthesized using chemical oxidation reaction. The emeraldine-salt form of PAnis was confirmed by FTIR and UV–Vis spectra. All the produced PAnis showed electrical conductivity from 4.5 × 10–3 to 4.2 × 10–1 S/cm. Among all PAnis, PAni-HCl possessed the highest electrical conductivity (4.2 × 10–1 S/cm) due to the low pH of HCl which provided more mobile carbocation. For sensor application, PAni-H2SO4 coated optical fiber sensor showed the best performance with the highest sensitivity of 0.0927 nm/ppm, fast response time of 11 s and limit of detection (LOD) of 30 ppm. The performance of this PAni-coated optical sensor is better than conventional methods with longer response time of 3 min and LOD of 5 ppm in Pb detection. This is due to the two steps dissociations of H2SO4 which can protonate larger amount of amine and imine groups along the PAni backbone to yield more active sites, which leads to the improvement in Pb detections. It is postulated that the mechanism of Pb detection is based on a bonding interaction that occurs between the Pb2+ cation and the double bond of N from the imine groups of PAni. Supporting data from FTIR, UV–Vis and electrical conductivity studies have confirmed the chemical interaction between PAni and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Ardalani, M. Shamsipur, and A. Besharati-Seidani, J. Electroanal. Chem. 879, 114788 (2020).

    Article  CAS  Google Scholar 

  2. A. Baysal, N. Ozbek, and S. Akman, in Waste Water. Treatment Technologies and Recent Analytical Developments, Ed. By F. S. G. Einschlag (IntechOpen, Rijeka, 2013), pp. 146−165.

    Google Scholar 

  3. B. H. Lee, Opt. Fiber Technol. 9, 57 (2003).

    Article  CAS  Google Scholar 

  4. Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, Sens. Actuators, A. 205, 58 (2014).

    Article  CAS  Google Scholar 

  5. D. J. Gentleman and K. S. Booksh, Talanta 68, 504 (2006).

    Article  CAS  Google Scholar 

  6. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012).

    Article  Google Scholar 

  7. A. Lokman, H. Arof, and S. W. Harun, Measurement 59, 167 (2015).

    Article  Google Scholar 

  8. H. Huang, W. C. Zhu, X. C. Gao, X. Y. Liu, and H. Y. Ma, Anal. Chim. Acta 947, 32 (2016).

    Article  CAS  Google Scholar 

  9. K. M. Molapo, P. M. Ndangili, R. F. Ajayi, G. Mbambisa, S. M. Mailu, N. Njomo, M. Masikini, P. Baker, and E. I. Iwuoha, Int. J. Electrochem. Sci. 7, 11859 (2012).

    CAS  Google Scholar 

  10. W. Wang, X. Xie, and S. He, Sensors 13, 16816 (2013).

    Article  Google Scholar 

  11. M. Eising, C. E. Cava, R. V. Salvatierra, A. J. G. Zarbin, and L. S. Roman, Sens. Actuators, B 245, 25 (2017).

    Article  CAS  Google Scholar 

  12. A. Soleymanpour and S. A. Rezvani, Sens. Actuators, B 247, 602 (2017).

    Article  CAS  Google Scholar 

  13. M. O. Munyati, A. Mbozi, M. N. Siamwiza, and M. M. Diale, Synth. Met. 233, 79 (2017).

    Article  CAS  Google Scholar 

  14. G. A. ter Boo, D. W. Grijpma, R. G. Richards, T. F. Moriarty, and D. Eglin, Clin. Hemorheology Microcirc. 60, 89 (2015).

    Article  CAS  Google Scholar 

  15. Y. S. Chiam, I. Z. M. Ahad, S. W. Harun, S. N. Gan, and S. W. Phang, Synth. Met. 211, 132 (2016).

    Article  CAS  Google Scholar 

  16. K. P. Sambasevam, S. Mohamad, and S. W. Phang, Mater. Sci. Semicond. Process. 33, 24 (2015).

    Article  CAS  Google Scholar 

  17. D. W. Hatchett, M. Josowicz, and J. Janata, J. Phys. Chem. B 103, 10992 (1999).

    Article  CAS  Google Scholar 

  18. Z. W. Yang, D. H. Coutinho, R. Sulfstede, K. J. Balkus, Jr., and J. P. Ferraris, J. Membr. Sci. 313, 86 (2008).

    Article  CAS  Google Scholar 

  19. Acids—pH Values’ in Engineering ToolBox 2003. https://www.engineeringtoolbox.com/acids-ph-d_401.html. Cited 2021.

  20. M. Hagen and J. Järnberg, “140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids,” in The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (University of Gothenburg, Gothenburg, 2009), p. 3.

    Google Scholar 

  21. I. Z. M. Ahad, S. W. Harun, S. N. Gan, and S. W. Phang, Sens. Actuators, B 261, 97 (2018).

    Article  Google Scholar 

  22. T. V. Freitas, E. A. Sousa, G. C. Fuzari Jr., and E. P. S. Arlindo, Mater. Lett. 224, 42 (2018).

    Article  CAS  Google Scholar 

  23. B. Butoi, A. Groza, P. Dinca, A. Balan, and V. Barna, Polymers 9, 732 (2017).

    Article  Google Scholar 

  24. C. Dhivya, S. Anbu Anjugam Vandarkuzhali, and N. Radha, Arab. J. Chem. 12, 3785 (2019).

    Article  CAS  Google Scholar 

  25. K. Y. Li and D. F. Xue, J. Phys. Chem. 110, 11332 (2006).

    Article  CAS  Google Scholar 

  26. N. Colak and B. Sokmen, Des. Monomers Polym. 3, 181 (2000).

    Article  CAS  Google Scholar 

  27. M. Ahmad Mir, M. Ahmad Bhat, S. Abdul Majid, S. H. Lone, M. Ahmad Malla, K. R. Tiwari, A. Hussain Pandit, R. Tomar, and R. Ahmad Bhat, J. Environ. Chem. Eng. 6, 1137 (2018).

    Article  Google Scholar 

  28. G. D. Zhu, Y. X. Ge, Y. Dai, X. H. Shang, J. M. Yang, and J. Y. Liu, Electrochim. Acta 268, 202 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to show gratitude for the financial support of this research by Tunku Abdul Rahman University College and the optical sensors were supplied by Universiti Tunku Abdul Rahman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sook-Wai Phang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing-Yi Ong, Law, ZJ., Pua, CH. et al. Effect of Acid Dopants Toward Polyaniline Based Optical Sensor for Lead Detection. Polym. Sci. Ser. A 63, 485–492 (2021). https://doi.org/10.1134/S0965545X21050102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21050102

Navigation